In July 2019, the 44th Natural Hazards Research and Applications Workshop in Broomfield, Colorado, brought us together for a panel discussion—Cases of Convergence in Action—to examine how convergence can be achieved in disaster risk reduction and resilience initiatives. We discussed cases of convergence in action from diverse geographies—New South Wales in Australia, and North Carolina and Oregon in the United States; and across sectors of work—community, environmental, and urban resilience. Our panel discussion was guided by the following five questions put forth by our moderatorFootnote 5:
-
(1)
How can convergence produce outcomes that are more than the sum of individual efforts?
-
(2)
How is convergence different in practice from collaboration?
-
(3)
What factors enable active convergence?
-
(4)
What factors undermine or constrain convergence?
-
(5)
What is the role of leadership in creating pathways for convergence?
Below, we provide some brief context on each case study. We then attempt to answer the above-stated questions to show how we interpreted and achieved convergence through our respective initiatives, while also identifying remaining challenges. The first case demonstrates how local institutions and services can achieve inclusive and empowering outcomes through sustained engagement and partnership with communities. The second case highlights the need to build trusting relationships and interdisciplinary understanding in project teams and with communities. The third case identifies the urgent need and entry points for adopting a convergence approach to address systemic risks. The three cases also enable reflection on why a convergence approach is especially relevant to examining the long-haul and cascading impacts of the ongoing COVID-19 pandemic.
Converging with Collaboration, Accountability, Responsiveness, and Empowerment (CARE) in New South Wales, Australia
As part of the lead author’s doctoral research at the University of Wollongong, Australia (2016−2019), a collaborative research project was undertaken in 2017, in partnership with city councils, multicultural agencies, emergency services, community-based organizations, and people from diverse refugee backgrounds living across the Illawarra region of New South Wales, Australia (Lakhina 2018a, 2018b, 2019; Lakhina et al. 2019). The Illawarra is a coastal region about 40 miles south of Sydney, encompassing the three local government areas of Wollongong, Shellharbour, and Kiama. Situated between an escarpment to the west and the South Pacific Ocean to the east, the Illawarra experiences a range of natural hazards, including bushfires, heatwaves, storms, flash flooding, and lightning. The region’s fast diversifying demographics and changing land use patterns are likely to result in increasing exposure of people and infrastructure to future climate change impacts.
The Illawarra case contributes at least three ways of achieving convergence in disaster research, policy, and programs. First, convergence can be understood as an ethic that motivates a higher order alignment on why we come together to work across silos with diverse people, communities, and institutions. Convergence requires a caring approach that takes a long and deep view of places, people, histories, and politics by opening constructive dialogue around future pathways (see Goldstein et al. 2014). By adopting a person-centered approach to co-learning disaster resilience with people from diverse backgrounds, the Illawarra case demonstrates a pathway to converging with CARE—collaboration, accountability, responsiveness, and empowerment (Lakhina 2019). The CARE approach emphasizes:
collaboration with people and institutions, holding the research team (ideally, comprising researcher/s, research participants, and local institutions) accountable to commonly defined research objectives and ethics, ensuring responsiveness to people’s needs and challenges, while sustaining empowering forms of engagement and partnerships (Lakhina 2019, p. 94).
In adopting an ethic of CARE, the Illawarra project centered community perspectives and regularly translated findings for institutional stakeholders. For example, during a workshop in November 2017, six thematic focus group discussions were facilitated between community and institutional representatives. These discussions enabled service providers, institutions, and community members to solve complex problems together, while developing a clear understanding of mutual capacities and needs. However, this kind of discussion required institutional representatives to look past their traditional top-down methods of “teaching” community members about disaster resilience, and instead, be willing to deeply engage with and learn from community perspectives, questions, and experiences. The workshop discussions led to the development of the New South Wales State Emergency Services’ first Multicultural Liaison Unit, comprising liaison officers from diverse refugee backgrounds (see Lakhina et al. 2019). Formed in December 2017, this unit now serves as a model for not just informing newly arrived people but also systematically engaging and partnering with culturally and linguistically diverse populations across the Illawarra on an ongoing basis (Ellis 2018; University of Wollongong 2018). The development of this unit corrects previously top-down approaches of disseminating information to emerging communities by adopting a sustained practice of engaging and partnering with emerging communities from refugee backgrounds. This outcome demonstrates how local institutions and services can reach beyond their historical silos and come together in novel ways to engage and partner with emerging communities for more just, equitable, and inclusive disaster resilience outcomes (Lakhina 2018a, 2019; Lakhina et al. 2019).
Second, local and cultural contexts can play an important role in how we converge. Convergence calls for greater recognition and engagement with the everyday micropolitics of places, institutions, and people. This entails listening closely and engaging deeply with people’s lived experiences and everyday practices of safety and well-being. For example, adopting a person-centered methodology and tool—the resilience narrative map (see Fig. 1)—allowed project partners to engage with culturally and geographically diverse narratives and practices, thereby developing a more inclusive understanding of what constitutes disaster resilience for newly arrived people in the Illawarra. As community experiences (in Q1), perceived strengths (in Q2), challenges (in Q3), and remaining needs (in Q4), were plotted in the resilience narrative mapping template (Fig. 1), local institutions and services could better visualize the kinds of community capacities that remain unengaged, and particular needs that remain unaddressed among new and emerging communities in the Illawarra (see Lakhina (2018a) for examples from Burma, the Democratic Republic of Congo, Iran, Iraq, Liberia, Syria, and Uganda). In this way, convergence can be understood as a method that foregrounds how we come together in inclusive ways to reduce vulnerability and enhance social well-being.
Third, convergence in outcomes can highlight what must be done to successfully translate research findings into policy and public actions for just, inclusive, and equitable outcomes. Convergence can entail new partnerships, interfaces, and ways of coming together. Convergence can also lead to divergence and transformations that challenge and disrupt existing structures and standards. For example, the process of coming together in the Illawarra revealed a lack of program coordination between the local emergency services, and the settlement and multicultural services, community-based organizations, places of worship, and community volunteers (see Lakhina (2018a, 2018b) for more about the project’s key findings). Addressing this coordination gap had implications for how local agencies come together to serve newly arrived people from refugee backgrounds in ways that are collaborative, accountable, responsive, and empowering. In this way, convergence can also reveal new and unforeseen entry points by challenging conventional ways of thinking and doing things. Undertaking a process of convergence entails an emphasis on “why” and “how” while “what” becomes contingent on the local and institutional context. Such open-endedness reveals new ways of doing things by thinking creatively about future pathways and modes of engagement. This can be difficult in situations where the power balance is likely to get upset but committing to a moral vision of “why” and “how” emphasizes the need to let go of conventional ways of thinking and practicing inclusion in disaster resilience work.
The Illawarra case also shows why it is important to diversify our understanding of leadership. Institutions and disciplinary “experts” are not the only ones who display leadership. Forms of leadership can also be observed in people’s daily activism, advocacy, and caring relationships within communities. Such leadership is amply demonstrated in the narratives of the Illawarra’s community, particularly by women and mothers from refugee backgrounds. The role of leadership in convergence approaches should not only be emphasized as one of “expertise” in a particular subject or domain, but also as the ability to sustain trust and care in relationships—healing relationships across political divides, bridging institutional relationships across silos, and fostering personal relationships between people and communities.
Building on this insight, the Illawarra project developed a framework for “co-learning disaster resilience”—a sustained process for informing, engaging, and partnering with newly arrived and recently settled people from refugee backgrounds (Lakhina 2018a). Understood in this way, co-learning is not a top-down or bottom-up approach. Instead, it represents a honeycomb of relationships (see Fig. 2), which can organically develop over time, through a coming together of efforts, a bringing together of diverse perspectives, and a continuous process of learning with and from one another. The honeycomb presented here is an attempt to provide an alternative visualization to network-based approaches that tend to represent power relations between points, hubs, and nodes in systems.
A deeper commitment to an ethic of CARE can also guide ongoing ethical and methodological discussions about a code of ethics for disaster research (Gaillard and Peek 2019; Gaillard et al. 2019). Perhaps giving greater recognition to the ethics and practices of how we converge can provide concrete pathways for reimagining disaster resilience as a set of diverse, transformative, and intercultural practices. Extending learning from the Illawarra case, how can disaster research, policy, and programs embrace convergence as an opportunity to move from an emphasis on efficiency to care, diagnosis to dialogue, and policy prescriptions to co-learning with people’s diverse experiences and perspectives (Lakhina 2019)?
Community Resilience Planning in North Carolina, United States
The Center for Risk-Based Community Resilience Planning, funded by the National Institute of Standards and Technology (NIST), has approximately 100 team members spanning diverse disciplines, such as engineering, computer science, economics, sociology, and urban planning, and representing academic, industry, and government backgrounds. The project’s goal is to produce a web-based application for modeling and assessing community-level resilience.Footnote 6 To collect the necessary data to support and/or validate ongoing resilience algorithms, the second author leads a longitudinal field study effort in Lumberton, North Carolina for the center. Diverse communities across the City of Lumberton in Robeson County were affected by two major hurricanes within a period of 23 months: Hurricane Matthew in October 2016 and Hurricane Florence in September 2018. The scope of the field study has centered on understanding how different community sectors, namely housing, business, local schools, and local and state governments, are impacted by disaster, and go through recovery both as individual and connected sectors. The field study team has collected data five times between 2016 and 2019 (see Fig. 3 for a field study timeline). Data collection for Wave 4 has been postponed due to the COVID-19 pandemic (see van de Lindt et al. (2020) and Sutley et al. (2021) for more information). For each data collection exercise, close-ended surveys are sent to the same housing units and businesses, and semistructured interviews are conducted with the same school and local government focal points.
The North Carolina case also contributes at least three ways of achieving convergence in disaster resilience initiatives. First, guided by a convergence ethic, the field study was designed to better reflect community impact, resilience, and recovery, to emphasize why we must come together to study disasters. The field study team was composed of structural engineers to examine building and infrastructure damage, sociologists to examine how the floodwaters impacted and disrupted households and businesses, and urban planners to examine how the city was responding to the disruption. Prior to deployment in 2016, the sociologists and urban planners were cross-trained in measuring flood damage, and the structural engineers were cross-trained in human subjects’ research, administering surveys, and conducting interviews. Early in the instrument development phase, multidisciplinary teams were formed to ensure the information being captured was well-rounded. Each wave of data collection consisted of more than 20 researchers from different disciplines. In the field, teams of two, three, or four researchers, spanning disciplinary expertise, administered the household surveys together. While extra training and time was required for instrument development, it was only through bringing these disciplines together that a richer picture of resilience and recovery could be formulated. The multidisciplinary, multisector, longitudinal study design became increasingly important amid the COVID-19 pandemic to document the cascading impacts of ongoing flood recovery amid a public health crisis, such as new parental educational responsibilities, lost employment, new business interruption, and housing instability.
Second, the project experience shows why local and cultural contexts can play an important role in what data we collect, and how we collect and use data for convergence. For example, the Lumber River was the source of flooding after both Hurricane Matthew in 2016 and Hurricane Florence in 2018. There were apparent trends in neighborhood locations, where more minority and low-income households lived south of the river in the floodplain, and white and wealthier households lived north of the river. This socio-geographical context was considered in the sampling approach and used as dependent variables in subsequent analysis (Sutley et al. 2019; Watson et al. 2020; van de Lindt et al. 2020). Additionally, the smallest income category reported by the United States Census and the American Housing Survey is USD 5000. However, more than a third of Lumberton’s population lives below the national poverty line, so the housing survey instrument included income categories as low as USD 1000. Furthermore, the culture in Lumberton is largely religious, and specifically, Christian. While households were more likely to be at home on weekends, Sunday mornings and lunch times were not used for data collection to respect associated religious practices. Finally, the people of Lumberton were severely, but differentially, impacted by both flood disasters. When we approached households and businesses for surveys, our team passed out information sheets on local mental health services, and shared information on where federal aid offices were set up. As depicted in Fig. 4, the team surveyed households and businesses to understand broader and individual experiences of disruption and recovery, and also interviewed representatives from the school systems, civic works departments, city, and state to understand the multilevel impact of the disaster. The latter enabled shared learning between our team and the community, and served to establish a feedback loop with decision makers to share our cross-sector research findings.
Third, regular face-to-face meetings over the span of a longitudinal project that lasted more than five years enabled the team to develop trusting relationships and interdisciplinary understanding. This experience provides important insights on how we converge for solutions-based outcomes, as identified by Peek et al. (2020). On the data collection side, the longitudinal nature of the study was critical to develop a more holistic understanding of recovery processes. In each subsequent wave, the same samples were revisited to document the recovery process. The same team members would be sent back, as best as possible, to the same locations over the years, to help build a trusting relationship between the project team and the people of Lumberton. The trust and relationships we cultivated with the people of Lumberton will be evermore critical for the success of virtual data collection in Wave 4.
In terms of the development of our project team, the Center for Risk-Based Community Resilience Planning was funded in February 2015 but it was not until October 2016 that the first field study was executed. The year and a half lead time for team development, including learning interdisciplinary terminology, and building trust, was crucial to our successful field-based collaboration. The center hosts a semiannual meeting where all team members meet in person; additional meetings are organized for subsets of working groups, including at shared conferences and partner institutions. Between in-person meetings, weekly video conference calls have kept the team working closely together and humanized the research process. These meetings have taken many forms, including information updates, working sessions, and presentations from individuals to learn more about their background. Leadership, particularly in academia, can sometimes hamper convergence by putting up barriers that protect traditional disciplinary boundaries. In presenting our project’s experience we show how leadership can instead begin to emphasize the need for interdisciplinary and transdisciplinary approaches to solve real-world problems. Through the project’s longitudinal collaborative effort, all team members learned from each other and helped to facilitate convergence research. This convergence outcome has been especially valuable for early career scholars and collaborators who took on more substantial roles, thereby substantively contributing to interdisciplinary disaster scholarship.
Critical Energy Infrastructure (CEI) Hub in Portland, Oregon, United States
Oregon’s Critical Energy Infrastructure (CEI) Hub in Portland holds most of the state’s liquid petroleum. A number of facilities located in the CEI Hub are nearly 100 years old and highly vulnerable to seismic, wildfire, and landslide hazards (DOGAMI 2012; Portland State University 2019). The six-mile corridor of petroleum storage tanks, fuel pipelines, and related energy infrastructure are located along the lower Willamette River shoreline immediately upstream of the confluence with the Columbia River. Due to a high concentration of natural hazards and associated risks, the CEI (Fig. 5) is considered to be Oregon’s “Achilles’ heel.”
Adopting a convergence approach, as ethic, method, and outcome, to address this disaster risk is urgent because the potential social, environmental, and economic impacts are likely to be enormous (Wilson 2019). Seismic research since the 1980s has shown that the City of Portland is at high risk of earthquakes and associated hazards (Flynn et al. 1999). Approaches to seismic mitigation have emphasized strengthening oil storage infrastructure (OSSPAC 2019). However, aligning seismic policies with climate change policies and finding common ground to understand and reduce community vulnerabilities has presented a major challenge in past years. A possible convergence solution will require reducing dependency on oil and promoting sustainable and clean energy approaches for future generations (Portland Bureau of Planning and Sustainability 2019). This will entail reducing exposure to at least five known hazards in this area.
First, the six miles of riverside shoreline is a high liquefaction hazard area with poor alluvial soils underlying over 500 tanks. These tanks date back to the 1920s; most were built in the 1950s and 1960s with no seismic design standards. A 2019 study by the City of Portland and Portland State University determined that the average daily capacity of the tank farm is 360 million gallons of petroleum products (OSSPAC 2019). While most tanks have containment berms to protect from accidental release, the tanks and berms would be subject to ground failure from liquefaction or lateral spreading during an earthquake and would create a cascading failure for a large percentage of the facilities’ tanks and pipelines.
Second, the CEI Hub sits along the Portland Hills fault, which has the potential to produce up to a magnitude 6.8 crustal earthquake and result in severe to violent ground shaking for the immediate area. While the recurrence period of earthquakes associated with this fault is 1,000 years, the most likely earthquake scenario is a magnitude 9.0 on the Cascadia subduction zone, that has a 500-year return interval and the last one occurred 320 years ago (OSSPAC 2013). A magnitude 9.0 earthquake would generate a strong and long period of shaking. There are currently no building codes or standards to prepare structures for this type of seismic event. The impacts of an earthquake, particularly a large earthquake, in this area will be further exacerbated by the vulnerability of decades old structures full of liquid petroleum.
Third, the CEI Hub and the west Portland Hills are prone to landslides and debris flows. A large number of these historic slides are documented by the Oregon Department of Geology and Mineral Industries (DOGAMI) and occur regularly with heavy and prolonged rainfall. A worst case scenario would be a damaging earthquake during the rainy season that triggers multiple landslides. These slides could directly impact numerous facilities in the CEI Hub, but also impair access for emergency response. A fourth natural hazard on the west side of the Willamette River is wildfire. Portland’s Forest Park is one of the largest urban forests in the country and is nestled in the west Portland Hills. During red flag periods, Forest Park and the intermix neighborhoods could easily become a conflagration from an ignition source in the CEI Hub and vice versa (see Miller 2020). The concentration of hundreds of petroleum storage tanks, along with tanks of ammonia and chlorine, present an imminent risk for the adjacent neighborhoods on both sides of the Willamette River. Smoke plumes and toxic chemical releases in the air and water would rapidly threaten the thousands of residents in short proximity from the tank farms.
Finally, any major release from the CEI Hub due to berm failures during an earthquake would generate a catastrophic oil spill with no emergency capacity to contain or mitigate spread. Such a spill on the lower Willamette River would pour into the lower Columbia River and reach the Pacific Ocean within days. A release of only 3% of the oil volume would equal the 1989 Exxon Valdez oil spill of 10.8 million gallons and would qualify as a spill of national significance, resulting in chronic and long-term impacts on trade and exports (Pacific Northwest Waterways Association 2019), wildlife, natural resources, water intakes, tourism, fishing, and general liveability, especially for tribal communities.
These compound risks entail the probable loss of nearly all of Oregon’s critical fuel immediately following a damaging earthquake (DOGAMI 2012; OSSPAC 2013). Further, the long-term impacts of infrastructure disruptions can be manifold, including on public health, local economies, and the environment (Chang 2016). Unfortunately, the potential of this cascading environmental and economic disaster, while very likely in a foreseeable earthquake, has not been studied, planned for, or widely communicated, to the extent required. In response to these dire scenarios, disaster simulation exercises have underscored the need for emergency fuel resources, along with fuel allocation planning, and studies for possible alternative sites and technical mitigation for existing structures. In 2015, Portland City Council passed a resolution to oppose the expansion of fossil-fuel dependent infrastructure; in 2016, a zoning ordinance prohibited the building of new fossil-fuel storage facilities; and in 2019, the state’s Governor signed legislation requiring that rail companies develop oil spill response plans (Cunningham 2019). A recent policy (State of Oregon 2018) listed the CEI Hub among the Governor’s top seismic risk priorities and two related CEI Hub reports (Oregon Solutions (2019) and OSSPAC (2013)) addressed the administrative and policy struggles of working with oil companies and regulatory agencies to find an agreeable solution. However, progress has been elusive. Figure 6 illustrates the political separations and restrictive lines of authority that continue to fragment responsibility and obstruct any meaningful progress.
This case highlights the complexity of tackling transdisciplinary issues and the urgent need for implementing a convergence-based approach that aligns seismic standards with climate change adaptation policies, and leverages recovery-informed planning towards a sustainable future. Specifically, Portland’s case highlights the need for convergence research, policy, and programs to deeply understand the environmental, social, and economic costs and consequences of transitioning to clean energy. It underlines the need for more regulatory oversight and coordination at the local, state, and national levels to bridge divides between oil companies and regulatory agencies. It also highlights the need for sustained ethical leadership to undertake inclusive visioning exercises and promote resilience values for what socially just recovery will entail in the event of cascading disaster impacts. As the first Pacific Northwest generation to understand the magnitude 9.0 seismic risk and global climate risks, our children and grandchildren need not inherit the same post-war era infrastructure that has already outlived its life expectancy and is operating well over its design capacity. The ongoing COVID-19 pandemic and calls for social justice further reiterate the need for convergence approaches that can address Portland’s systemic vulnerability to cascading disasters. The urgent need of the hour is for a coherent national climate strategy to outline locally enforceable targets for reducing emissions, adopting clean energy fuel, and strengthening public infrastructure, while addressing social inequities through a convergence approach.