The Work Surfaces of Morphogenesis: The Role of the Morphogenetic Field

Abstract

How biological form is generated remains one of the most fascinating but elusive challenges for science. Moreover, it is widely documented in contemporary literature that development is tightly coordinated. The idea that such development is governed by a coordinating field of force, the morphogenetic field, and its position in embryology research paradigms, is traced in this article. Empirical evidences for field phenomena are described, ranging from bioelectromagnetic effects, morphology, transplantation, regeneration, and other data. Applications of medical potential including treatment of cancer, birth defects, and wound healing are highlighted. The article hypothesizes that distinct morphological forms may have distinct field parameters. Experimentally tractable field parameters may thus provide an exciting research program for probing morphogenesis and phylogenetic diversity.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Notes

  1. 1.

    The organizer is in turn thought to be induced by a signal secreted by the Nieuwkoop center, with similar signaling centres discovered in the zebrafish, chick, and sea urchin (reviewed by Vonica and Gumbiner 2007). Inducers released by the organizer have now been identified which encode antagonists of bone morphogenetic protein, Nodal or Wnt growth factors. The field parameters may be characterized by the different expression domains of these growth factors and their antagonists, which create signaling gradients, which in turn are implicated in patterning the early embryo in a combinatorial fashion (Niehrs 2004).

  2. 2.

    File S1 in Online Resource 1 is a higher resolution of the Z-series from Tyler and Kimber (2006) web material at http://www.ijdb.ehu.es/data/05/052007st/S4.mov.

    The file shows morphological evidence for a field system in Crepidula mollusc eggs. It is a confocal imaging Z-series of microtubules stained with FITC-anti-α tubulin antibody. All optical sections of 5 μm interval; 16-cell stage leading to 20-cell formation. Progressing through the Z-series reveals interconnection of microtubular network and orientation of spindles and asters with reference to one another throughout the whole embryo; 72 sections.

References

  1. Aaron RK, Ciombor DM, Simon BJ (2004) Treatment of nonunions with electric and electromagnetic fields. Clin Orthop Relat Res 419:21–29

    Google Scholar 

  2. Abel R, Macho GA (2011) Ontogenetic changes in the internal and external morphology of the ilium in modern humans. J Anat 218:324–335

    Google Scholar 

  3. Abu-Issa R, Kirby ML (2008) Patterning of the heart field in the chick. Dev Biol 319:223–233

  4. Adams DS, Masi A, Levin M (2007) H+ pump-dependent changes in membrane voltage are an early mechanism necessary and sufficient to induce Xenopus tail regeneration. Development 134:1323–1335

    Google Scholar 

  5. Allman GJ (1864) Report on the present state of our knowledge of the reproductive system in the Hydroida. Rep Br Assoc Advmt Sci 33:351–426

  6. Arcangeli A, Crociani O, Lastraioli E et al (2009) Targeting ion channels in cancer: a novel frontier in antineoplastic therapy. Curr Med Chem 16:66–93

    Google Scholar 

  7. Astigiano S, Damonte P, Fossati S et al (2005) Fate of embryonal carcinoma cells injected into postimplantation mouse embryos. Differentiation 73:484–490

    Google Scholar 

  8. Aufderheide KJ, Frankel J, Williams NE (1980) Formation and positioning of surface-related structures in protozoa. Microbiol Rev 44:252–302

    Google Scholar 

  9. Ayala FJ (1983) Microevolution and macroevolution. In: Bendall DS (ed) Evolution from molecules to men. Cambridge University Press, Cambridge, pp 387–402

    Google Scholar 

  10. Barth LG, Barth LJ (1974) Ionic regulation of embryonic induction and cell differentiation in Rana pipiens. Dev Biol 39:1–22

    Google Scholar 

  11. Becker RO, Sparado JA (1972) Electrical stimulation of partial limb regeneration in mammals. Bull NY Acad Med 48:627–641

    Google Scholar 

  12. Behrens HM, Weisenseel MH, Sievers A (1982) Rapid changes in the pattern of electric current around the root tip of Lepidium sativum L. following gravistimulation. Plant Physiol 70:1079–1083

    Google Scholar 

  13. Beloussov LV (1997) Life of Alexander G. Gurwitsch and his relevant contribution to the theory of morphogenetic fields. Int J Dev Biol 41:771–779

    Google Scholar 

  14. Beloussov LV, Grabovsky VI (2006) Morphomechanics: goals, basic experiments and models. Int J Dev Biol 50:81–92

    Google Scholar 

  15. Beloussov LV, Volodyaev IV (2013) From molecular machines to macroscopic fields: an accent to characteristic times. Eur J Biophys 1:6–15

    Google Scholar 

  16. Bizzarri M, Cucina A, Biava PM et al (2011) Embryonic morphogenetic field induces phenotypic reversion in cancer cells. Curr Pharm Biotechnol 12:243–253

    Google Scholar 

  17. Borgens RB, Rouleau MF, DeLanney LE (1983) A steady efflux of ionic current predicts hind limb development in the axolotl. J Exp Zool 228:491–503

  18. Borgens RB, Vanable JW Jr, Jaffe LF (1977) Bioelectricity and regeneration: large currents leave the stumps of regenerating newt limbs. Proc Natl Acad Sci USA 74:4528–4532

    Google Scholar 

  19. Borgens RB, McGinnis ME, Vanable JW Jr et al (1984) Stump currents in regenerating salamanders and newts. J Exp Zool 231:249–256

    Google Scholar 

  20. Borgens RB, Blight AR, McGinnis ME (1990) Functional recovery after spinal cord hemisection in guinea pigs: the effects of applied electric fields. J Comp Neurol 296:634–653

    Google Scholar 

  21. Borgens RB, Toombs JP, Breur G et al (1999) An imposed oscillating electrical field improves the recovery of function in neurologically complete paraplegic dogs. J Neurotrauma 16:639–657

    Google Scholar 

  22. Boveri T (1901) Die Polarität von Ovocyte, Ei und Larve des Strongylocentrotus lividus. Zool Jahrb 14:630–653

    Google Scholar 

  23. Boveri T (1910) Die Potenzen der Ascaris-Blastomeren bei abgeänderter Furchung. Festschrift zur sechzichsten Geburtstag Richard Hertwig 3:131–214

    Google Scholar 

  24. Brière C, Goodwin BC (1990) Effects of calcium input/output on the stability of a system for calcium regulated viscoelastic strain fields. J Math Biol 28:585–593

    Google Scholar 

  25. Brockes JP (1998) Regeneration and cancer. Biochim Biophys Acta 1377:M1–M11

    Google Scholar 

  26. Burr HS (1941) Changes in the field properties of mice with transplanted tumors. Yale J Biol Med 13:783–788

    Google Scholar 

  27. Burr HS (1947) Field theory in biology. Sci Monogr 64:217–225

    Google Scholar 

  28. Burr HS, Sinnott EW (1944) Electrical correlates of form in cucurbit fruits. Am J Bot 31:249–253

    Google Scholar 

  29. Chang WH, Chen LT, Sun JS et al (2004) Effect of pulse-burst electromagnetic field stimulation on osteoblast cell activities. Bioelectromagnetics 25:457–465

    Google Scholar 

  30. Chiang M, Robinson KR, Vanable JW Jr (1992) Electrical fields in the vicinity of epithelial wounds in the isolated bovine eye. Exp Eye Res 54:999–1003

    Google Scholar 

  31. Child CM (1941) Patterns and problems of development. University of Chicago Press, Chicago

    Google Scholar 

  32. Cone CD (1974) The role of the surface electrical transmembrane potential in normal and malignant mitogenesis. Ann NY Acad Sci 238:420–435

    Google Scholar 

  33. Cone CD, Cone CM (1976) Induction of mitosis in mature neurons in central nervous system by sustained depolarization. Science 192:155–158

    Google Scholar 

  34. De Robertis EM, Morita EA, Cho KWY (1991) Gradient fields and homeobox genes. Development 112:669–678

    Google Scholar 

  35. Dohmen MRV, Van Der Mey JCA (1977) Local surface differentiations at the vegetal pole of the eggs of Nassarius reticulatus, Buccinum undatum, and Crepidula fornicata (Gastropoda, Prosobranchia). Dev Biol 61:104–113

    Google Scholar 

  36. Driesch H (1892a) Entwicklungsmechanische Studien. I. Der Werth der beiden ersten Furschungszellen in der Echinodermenentwicklung. Experimentelle Erzeutung von Theil- und Doppelbildungen. Z wiss Zool 53(160–178):183–184

    Google Scholar 

  37. Driesch H (1892b) Entwicklungsmechanische Studien VI. Uber einige allgemeine Fragen der theoretichen Morphologie. Z wiss Zool 55:1–62

    Google Scholar 

  38. Driesch H (1894) Analytische Theorie der organischen Entwicklung. Engelmann, Leipzig

    Google Scholar 

  39. Driesch H (1908) The science and philosophy of the organism, vol 1. Adam and Charles Black, London

    Google Scholar 

  40. Farge E (2013) Mechano-sensing in embryonic biochemical and morphologic patterning: evolutionary perspectives in the emergence of primary organisms. Biol Theory 8:232–244

    Google Scholar 

  41. Frankel J (1989) Pattern formation: ciliate studies and models. Oxford University Press, Oxford

    Google Scholar 

  42. Frankel J (1991) The patterning of ciliates. J Protozool 38:519–525

    Google Scholar 

  43. Frankel J (1992) Positional information in cells and organisms. Trends Cell Biol 2:256–260

    Google Scholar 

  44. Frankel J (2008) What do genic mutations tell us about the structural patterning of a complex single-celled organism? Eukaryot Cell 7:1617–1639

    Google Scholar 

  45. Franklin S, Vondriska TM (2011) Genomes, proteomes, and the Central Dogma. Circ Cardiovasc Genet 4:576. doi:10.1161/CIRCGENETICS.110.957795

    Google Scholar 

  46. Fukumoto T, Kema IP, Levin M (2005) Serotonin signaling is a very early step in patterning of the left-right axis in chick and frog embryos. Curr Biol 15:794–803

    Google Scholar 

  47. Funk RH, Monsees T, Ozkucur N (2009) Electromagnetic effects—from cell biology to medicine. Prog Histochem Cytochem 43:177–264

    Google Scholar 

  48. Gilbert SF, Opitz JM, Raff RA (1996) Resynthesizing evolutionary and developmental biology. Dev Biol 173:357–372

    Google Scholar 

  49. Goodwin BC (1985) The causes of morphogenesis. BioEssays 3:32–36

    Google Scholar 

  50. Goodwin BC (1988) Problems and prospects in morphogenesis. Experientia 44:633–637

    Google Scholar 

  51. Goodwin BC (2000) The life of form. Emergent patterns of morphological transformation. Acad Sci Paris, Sci de la vie/Life Sci 323:15–21

    Google Scholar 

  52. Goodwin BC, Cohen MH (1969) A phase-shift model for the spatial and temporal organization of developing systems. J Theor Biol 25:49–107

    Google Scholar 

  53. Goodwin BC, Trainor LEH (1980) A field description of the cleavage process in morphogenesis. J Theor Biol 85:757–770

    Google Scholar 

  54. Goodwin BC, Trainor LEH (1985) Tip and whorl morphogenesis in Acetabularia by calcium-regulated strain fields. J Theor Biol 117:79–105

    Google Scholar 

  55. Gordon R (1999) The hierarchical genome and differentiation waves, vol 1. World Scientific Publishing, London

    Google Scholar 

  56. Gordon R, Parkinson J (2005) Potential roles for diatomists in nanotechnology. J Nanosci Nanotechnol 5:35–40

    Google Scholar 

  57. Gould SJ (1980) Is a new general theory of evolution emerging? Paleobiology 6:119–130

    Google Scholar 

  58. Graw J (2010) Eye development. Curr Top Dev Biol 90:343–387

  59. Gurwitsch AG (1910) Über Determinierung, Normierung und Zufall in der Ontogenese. Arch Entw Mech 30:133–193

    Google Scholar 

  60. Gurwitsch AG (1912) Die Vererbung als Verwirklichungsvorgang. Biol Zbl 22:458–486

    Google Scholar 

  61. Gurwitsch AG (1922) Über den Begriff des embryonalen Feldes. Arch Entw Mech 51:388–415

    Google Scholar 

  62. Gurwitsch AG (1944) A biological field theory. Sovietskaye Nauka, Moscow

    Google Scholar 

  63. Harold FM (1995) From morphogenes to morphogenesis. Microbiology 141:2765–2778

    Google Scholar 

  64. Harold FM (2005) Molecules into cells: specifying spatial architecture. Microbiol Mol Biol Rev 69:544–564

    Google Scholar 

  65. Harrison RG (1918) Experiments on the development of the forelimb of Amblystoma, a self-differentiating equipotential system. J Exp Zool 25:413–461

    Google Scholar 

  66. Hendrix MJ, Seftor EA, Seftor RE et al (2007) Reprogramming metastatic tumour cells with embryonic microenvironments. Nat Rev Cancer 7:246–255

    Google Scholar 

  67. Hinman VF, O’Brien EK, Richards GS et al (2003) Expression of anterior Hox genes during larval development of the gastropod Haliotis asinina. Evol Dev 5:508–521

    Google Scholar 

  68. Holtfreter J (1945) Neuralization and epidermization of gastrula ectoderm. J Exp Zool 98:161–209

    Google Scholar 

  69. Horder TJ, Weindling PJ (1983) In: Horder TJ, Witkowski JA, Wylie CC (eds) A history of embryology. Cambridge University Press, Cambridge, pp 183–242

  70. Huxley J, De Beer GR (1934) The elements of experimental embryology. Cambridge University Press, Cambridge

    Google Scholar 

  71. Jaeger J, Reinitz J (2006) On the dynamic nature of positional information. BioEssays 28:1102–1111

    Google Scholar 

  72. Jaffe L (1981) The role of ionic currents in establishing developmental pattern. Philos Trans R Soc Lond B 295:553–566

    Google Scholar 

  73. Jaffe LF (1986) Calcium and morphogenetic fields. Ciba Found Symp 122:271–288

    Google Scholar 

  74. Jaimovich E, Carrasco MA (2002) IP3 dependent Ca2+ signals in muscle cells are involved in regulation of gene expression. Biol Res 35:195–202

    Google Scholar 

  75. Jerka-Dziadosz M, Beisson J (1990) Genetic approaches to ciliate pattern formation: from self-assembly to morphogenesis. Trends Genet 6:41–45

    Google Scholar 

  76. Kalthoff K (1996) Analysis of biological development. McGraw-Hill, New York

    Google Scholar 

  77. Kurtz I, Shrank AR (1955) Bioelectrical properties of intact and regenerating earthworms Eisenia fetida. Physiol Zool 28:322–330

    Google Scholar 

  78. Lage K, Mollgard K, Greenway S et al (2010) Dissecting spatiotemporal protein networks driving human heart development and related disorders. Mol Syst Biol 6:381. doi:10.1038/msb.2010.36

    Google Scholar 

  79. Lakirev AV, Belousov LV (1986) Computer modeling of gastrulation and neurulation in amphibian embryos based on mechanical tension fields. Ontogenez 17(6):636–647

    Google Scholar 

  80. Lang F, Foller M, Lang KS et al (2005) Ion channels in cell proliferation and apoptotic cell death. J Membr Biol 205:147–157

    Google Scholar 

  81. Lee M, Vasioukhin V (2008) Cell polarity and cancer–cell and tissue polarity as a noncanonical tumor suppressor. J Cell Sci 121:1141–1150

  82. Levin M (2003) Bioelectromagnetics in morphogenesis. Bioelectromagnetics 24:295–315

    Google Scholar 

  83. Levin M (2009) Bioelectric mechanisms in regeneration: unique aspects and future perspectives. Semin Cell Dev Biol 20:543–556

    Google Scholar 

  84. Levin M (2012) Molecular bioelectricity in developmental biology: new tools and recent discoveries. BioEssays 34:205–217

    Google Scholar 

  85. Lord EM, Sanders LC (1992) Roles for the extracellular matrix in plant development and pollination. Dev Biol 153:16–28

    Google Scholar 

  86. Løvtrup S, Løvtrup M (1988) The morphogenesis of molluscan shells: a mathematical account using biological parameters. J Morphol 197:53–62

    Google Scholar 

  87. Lund EJ (1921) Experimental control of organic polarity by the electric current. I. Effects of the electric current on regenerating internodes of Obelia commissuralis. J Exp Zool 34:470–493

    Google Scholar 

  88. Lund EJ (1931) Electric correlation between living cells in cortex and wood in the Douglas fir. Plant Physiol 6:631–652

    Google Scholar 

  89. Lund EJ (1947) Bioelectric fields and growth. University of Texas Press, Austin

    Google Scholar 

  90. Marsh G, Beams HW (1957) Electrical control of morphogenesis in regenerating Dugesia tigrina. J Cell Comp Physiol 39:191–211

    Google Scholar 

  91. Martens JR, O’Connell K, Tamkun M (2004) Targeting of ion channels to membrane microdomains: localization of KV channels to lipid rafts. Trends Pharmacol Sci 25:16–21

    Google Scholar 

  92. Martinez-Frias ML, Frias JL, Opitz JM (1998) Errors of morphogenesis and developmental field theory. Am J Med Genet. 76(4):291–296

  93. McCaig CD, Rajnicek AM, Song B et al (2005) Controlling cell behavior electrically: current views and future potential. Physiol Rev 85:943–978

    Google Scholar 

  94. McCaig CD, Song B, Rajnicek AM (2009) Electrical dimensions in cell science. J Cell Sci 122:4267–4276

    Google Scholar 

  95. McGinnis W, Krumlauf R (1992) Homeobox genes and axial patterning. Cell 68:283–302

    Google Scholar 

  96. McLachlan JC (1999) The use of models and metaphors in developmental biology. Endeavour 23:51–55

    Google Scholar 

  97. Messerli MA, Graham DM (2011) Extracellular electrical fields direct wound healing and regeneration. Biol Bull 221:79–92

    Google Scholar 

  98. Metcalf MEM, Borgens RB (1994) Weak applied voltages interfere with amphibian morphogenesis and pattern. J Exp Zool 268:322–338

    Google Scholar 

  99. Morgan TH (1934) Embryology and genetics. Columbia University Press, New York

    Google Scholar 

  100. Morozova N, Shubin M (2013) The geometry of morphogenesis and the morphogenetic field concept. In: Capasso V, Gromov M, Harel-Belan A et al (eds) Pattern formation in morphogenesis: problems and mathematical issues. Springer, Berlin, pp 255–282

    Google Scholar 

  101. Murray JD, Oster GF (1984) Cell traction models for generating pattern and form in morphogenesis. J Math Biol 19:265–279

    Google Scholar 

  102. Nanney DL (1966) Cortical integration in Tetrahymena: an exercise in cytogeometry. J Exp Zool 161:307–318

    Google Scholar 

  103. Needham J (1936) New advances in the chemistry and biology of organized growth. J Proc R Soc Med 29:1577–1626

    Google Scholar 

  104. Needham J (1942) Biochemistry and morphogenesis. Cambridge University Press, Cambridge

    Google Scholar 

  105. Newman SA, Linde-Medina M (2013) Physical determinants in the emergence and inheritance of multicellular form. Biol Theory 8:274–285

    Google Scholar 

  106. Nick P, Furuya M (1992) Induction and fixation of polarity: early steps in plant morphogenesis. Dev Growth Differ 34:115–125

    Google Scholar 

  107. Niehrs C (2004) Regionally specific induction by the Spemann Mangold organizer. Nat Rev Genet 5:425–434

    Google Scholar 

  108. Niehrs C (2010) On growth and form: a Cartesian coordinate system of Wnt and BMP signaling specifies bilaterian body axes. Development 137:845–857

    Google Scholar 

  109. Nieuwkoop PD (1973) The organization center of the amphibian embryo: its origin, spatial organization, and morphogenetic action. Adv Morphogenet 10:1–39

    Google Scholar 

  110. Nieuwkoop PD (1977) Origin and establishment of embryonic polar axes in amphibian development. Curr Top Dev Biol 11:115–132

    Google Scholar 

  111. Niwa N, Inoue Y, Nozawa A et al (2000) Correlation of diversity of leg morphology in Gryllus bimaculatus (cricket) with divergence in DPP expression pattern during leg development. Development 127:4373–4381

    Google Scholar 

  112. Nuccitelli R (1984) The involvement of transcellular ion currents and electric fields in pattern formation. In: Malacinski GM, Brant SV (eds) Pattern formation: a primer in developmental biology. Macmillan, New York, pp 23–46

    Google Scholar 

  113. Nuccitelli R (1988) Physiological electric fields can influence cell motility, growth and polarity. Adv Cell Biol 2:213–232

    Google Scholar 

  114. Nuccitelli R (2003) A role for endogenous electric fields in wound healing. Curr Top Dev Biol 58:1–26

    Google Scholar 

  115. Nuccitelli R, Nuccitelli P, Changyi L et al (2011) The electric field near human skin wounds declines with age and provides a non-invasive indicator of wound healing. Wound Repair Regen 19:645–655

    Google Scholar 

  116. O’Shea PS (1988) Physical fields and cellular organization: field dependent mechanisms of morphogenesis. Experientia 44:684–694

    Google Scholar 

  117. Ochi H, Westerfield M (2007) Signaling networks that regulate muscle development: lessons from zebrafish. Dev Growth Differ 49:1–11

    Google Scholar 

  118. Opitz JM (1985) The developmental field concept. Am J Med Genet 21:1–11

    Google Scholar 

  119. Opitz JM (1993) Blastogenesis and the “primary field” in human development. Birth Defects Orig Artic Ser 29:3–37

    Google Scholar 

  120. Oppenheimer JM (1966) The growth and development of developmental biology. In: Locke M (ed) Major problems in developmental biology. Academic Press, New York, pp 1–27

    Google Scholar 

  121. Oster GF, Odell G, Alberch P (1980) Mechanics, morphogenesis and evolution. In: Oster G (ed) Mathematical problems in the life sciences. American Mathematical Society, Providence, pp 165–255

    Google Scholar 

  122. Pai VP, Aw S, Shomrat T, Lemire JM, Levin M (2012) Transmembrane voltage potential controls embryonic eye patterning in Xenopus laevis. Development 139:313–323

  123. Papageorgiou S (2006) Pulling forces acting on Hox gene clusters cause expression collinearity. Int J Dev Biol 50:301–308

    Google Scholar 

  124. Phillips A (2012) Structural optimisation: biomechanics of the femur. Proc ICE—Eng Comput Mech 165:147–154

    Google Scholar 

  125. Pilla AA (2002) Low-intensity electromagnetic and mechanical modulation of bone growth and repair: are they equivalent? J Orthop Sci 7(3):420–428

    Google Scholar 

  126. Poo M, Robinson KR (1977) Electrophoresis of concanavalin A receptors along embryonic muscle cell membrane. Nature 265:602–605

    Google Scholar 

  127. Potter JD (2007) Morphogens, morphostats, microarchitecture and malignancy. Nat Rev Cancer 7:464–474

    Google Scholar 

  128. Raff RA, Kaufmann TC (1983) Embryos, genes and evolution. Macmillan, London

    Google Scholar 

  129. Ramadan A, Elsaidy M, Zyada R (2008) Effect of low-intensity direct current on the healing of chronic wounds: a literature review. J Wound Care 17:292–296. Erratum 17(8):367

  130. Raup DM (1962) Computer as aid in describing form in gastropod shells. Science 138:150–152

    Google Scholar 

  131. Rehm WS (1938) Bud regeneration and electrical polarities in Phaseolus multiflorus. Plant Physiol 13:81–101

    Google Scholar 

  132. Reid DT, Peichel CL (2010) Perspectives on the genetic architecture of divergence in body shape in sticklebacks. Integr Comp Biol 50:1057–1066

    Google Scholar 

  133. Reissis D, Abel RL (2012) Development of fetal trabecular micro-architecture in the humerus and femur. J Anat 220:496–503

    Google Scholar 

  134. Robinson KR (1989) Endogenous and applied electrical currents: their measurement and application. In: Borgens RB, Robinson KR, Vanable JW Jr et al (eds) Electric fields in vertebrate repair: natural and applied voltages in vertebrate regeneration and healing. Liss, New York, pp 1–25

    Google Scholar 

  135. Rosene HF, Lund EJ (1953) Bioelectric fields and correlation in plants. In: Loomis WE (ed) Growth and differentiation in plants. Iowa State College Press, Ames, pp 219–252

    Google Scholar 

  136. Runnström J (1914) Analytische Studien uber die Seeigelenentwicklung. I W Roux Arch Entw Mech Org 40:526–564

    Google Scholar 

  137. Sachs T (1991) Cell polarity and tissue patterning in plants. Development Suppl 1:83–93

    Google Scholar 

  138. Sander K (1996) On the causation of animal morphogenesis: concepts of German-speaking authors from Theodor Schwann (1839) to Richard Goldschmidt (1927). Int J Dev Biol 40:7–20

    Google Scholar 

  139. Schock F, Perrimon N (2002) Molecular mechanisms of morphogenesis. Cell and Dev Biol 18:463–493

    Google Scholar 

  140. Schwartz JH (2013) Emergence of shape. Biol Theory 8:209–210

    Google Scholar 

  141. Settleman J (2001) Rac ‘n Rho: the music that shapes the embryo. Dev Cell 1:321–331

    Google Scholar 

  142. Shapiro S (2012) A review of oscillating field stimulation to treat human spinal cord injury. World Neurosurg. doi:10.1016/j.wneu.2012.11.039

    Google Scholar 

  143. Shapiro S, Borgens R, Pascuzzi R et al (2005) Oscillating field stimulation for complete spinal cord injury in humans: a phase 1 trial. J Neurosurg Spine 2:3–10

    Google Scholar 

  144. Shi R, Borgens RB (1995) Three-dimensional gradients of voltage during development of the nervous system as invisible coordinates for the establishment of embryonic pattern. Dev Dyn 202:101–114

    Google Scholar 

  145. Shih YL, Le T, Rothfield L (2003) Division site selection in Escherichia coli involves dynamic redistribution of Min proteins within coiled structures that extend between the two cell poles. Proc Natl Acad Sci USA 100:7865–7870

    Google Scholar 

  146. Sinnott EW (1960) Plant morphogenesis. McGraw-Hill, New York

    Google Scholar 

  147. Sinnott EW, Bloch R (1944) Visible expression of cytoplasmic pattern in the differentiation of xylem strands. Proc Natl Acad Sci USA 30:388–392

    Google Scholar 

  148. Sonnenschein C, Soto AM (1999) The society of cells: cancer and control of cell proliferation. Springer, New York

    Google Scholar 

  149. Sonnenschein C, Soto AM (2000) Somatic mutation theory of carcinogenesis: why it should be dropped and replaced. Mol Carcinog 29:205–211

    Google Scholar 

  150. Sonnenschein C, Soto AM (2008) Theories of carcinogenesis: an emerging perspective. Semin Cancer Biol 18:372–377

    Google Scholar 

  151. Stumpf HF (1967) Über den Verlauf eines Schuppenorientierenden Gefalles bei Galleria mellonella. Wilhelm Roux Arch Entw Mech Org 158:315–330

    Google Scholar 

  152. Sundelacruz S, Levin M, Kaplan DL (2008) Membrane potential controls adipogenic and osteogenic differentiation of mesenchymal stem cells. PLoS One 3:e3737

    Google Scholar 

  153. Thomas JB (1939) Electric control of polarity in plants. PhD thesis, Wageningen University, Wageningen, The Netherlands

  154. Thomas GH, Kiehart DP (1994) Beta spectrin has a restricted tissue and sub-cellular distribution during Drosophila embryogenesis. Development 120:2039–2050

    Google Scholar 

  155. Thompson DA (1942) On growth and form. The University Press, Cambridge

  156. Thorpe TA (2012) History of plant tissue culture. Methods Mol Biol 877:9–27

    Google Scholar 

  157. Tsikolia N (2006) The role and limits of a gradient based explanation of morphogenesis: a theoretical consideration. Int J Dev Biol 50:333–340

    Google Scholar 

  158. Tucker JB (1981) Cytoskeletal coordination and intercellular signalling during metazoan embryogenesis. J Embryol Exp Morphol 65:1–25

    Google Scholar 

  159. Tyler SEB, Kimber SJ (2006) The dynamic nature of mollusc egg surface architecture and its relation to the microtubule network. Int J Dev Biol 50:405–412

    Google Scholar 

  160. Tyler SEB, Butler RD, Kimber SJ (1998) Morphological evidence for a morphogenetic field in gastropod mollusc eggs. Int J Dev Biol 42:79–85

    Google Scholar 

  161. Tyner KM, Kopelman R, Philbert MA (2007) “Nanosized voltmeter” enables cellular-wide electric field mapping. Biophys J 93:1163–1174

    Google Scholar 

  162. Vandenberg LN, Morrie RD, Adams DS (2011) V-ATPase-dependent ectodermal voltage and pH regionalization are required for craniofacial morphogenesis. Dev Dyn 240:1889–1904

    Google Scholar 

  163. Viczian AS, Solessio EC, Lyou Y et al (2009) Generation of functional eyes from pluripotent cells. PLoS Biol 7:e1000174

    Google Scholar 

  164. Vöchting H (1877) Ueber Theilbarkeit im Pflanzenreich und die Wirkung innerer und äusserer Krafte auf Organbildung an Pflanzentheilen. Arch gesamte Physiol Mensch Tiere 15:153–190

    Google Scholar 

  165. Vöchting H (1878) Über Organbildung im Pflanzenreich. Cohen, Bonn

    Google Scholar 

  166. Vonica A, Gumbiner BM (2007) The Xenopus Nieuwkoop center and Spemann-Mangold organizer share molecular components and a requirement for maternal Wnt activity. Dev Biol 312:90–102

    Google Scholar 

  167. Waddington CH (1935) Cancer and the theory of organisers. Nature 135:606–608

    Google Scholar 

  168. Waddington CH (1956) Principles of embryology. Allen and Unwin, London

    Google Scholar 

  169. Wallace R (2007) Neural membrane microdomains as computational systems: toward molecular modelling in the study of neural disease. Biosystems 87:20–30

    Google Scholar 

  170. Wallis J (1659) Tractatus duo, priore de Cycloide. Oxford

  171. Wardlaw CW (1968) Morphogenesis in plants. Methuen, London

    Google Scholar 

  172. Wardlaw CW (1970) Cellular differentiation in plants and other essays. Manchester University Press, Manchester

    Google Scholar 

  173. Webb SE, Millar AL (2011) Visualization of Ca2+ signaling during embryonic skeletal muscle formation in vertebrates. Cold Spring Harb Perspect Biol 3(2). doi: 10.1101/cshperspect.a004325

  174. Weiss PA (1939) Principles of development: a text in experimental embryology. Holt, New York

    Google Scholar 

  175. Willier BH, Oppenheimer JM (1974) Foundations of experimental embryology. Hafner Press, New York

    Google Scholar 

  176. Wolff J (1870) Über die innere Architectur der Knochen und ihre Bedeutung für die Frage vom Knochenwachsthum. Virchows Arch Pathol Anat Physiol 50:389–450. Translated and abridged by Heller MO, Taylor WR, Aslanidis N et al. In: Wolff J (2010) On the inner architecture of bones and its importance for bone growth. Clin Orthop Relat Res 468:1056–1065

  177. Wolpert L (1969) Positional information and the spatial pattern of cellular differentiation. J Theor Biol 25:1–47

    Google Scholar 

  178. Wolpert L (1977) The development of pattern and form in animals. Carolina Biological, Burlington

    Google Scholar 

  179. Wolpert L (1986) Gradients, position and pattern: a history. In: Horder TJ, Witkowski JA, Wylie CC (eds) A history of embryology. Cambridge University Press, Cambridge, pp 347–361

    Google Scholar 

  180. Woodruff RI, Telfer WH (1973) Electrical properties of ovarian cells linked by intercellular bridges. Ann NY Acad Sci 238:408–419

    Google Scholar 

  181. Woodruff RI, Telfer WH (1980) Electrophoresis of proteins in intercellular bridges. Nature 286:84–86

    Google Scholar 

  182. Zhao M (2009) Electrical fields in wound healing—an overriding signal that directs cell migration. Semin Cell Dev Biol 20:674–682

    Google Scholar 

  183. Zhao M, Forrester JV, McCaig CD (1999a) A small physiological field orients cell division. Proc Natl Acad Sci USA 96:4942–4946

    Google Scholar 

  184. Zhao M, Dick A, Forrester JV et al (1999b) Electric field-directed cell motility involves up-regulated expression and asymmetric redistribution of the epidermal growth factor receptors and is enhanced by fibronectin and laminin. Mol Biol Cell 10:1259–1276

    Google Scholar 

Download references

Acknowledgments

I would like to thank Barbara Verrall for helpful comments on the manuscript, and Luke Tyler for assistance with proof reading.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sheena E. B. Tyler.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MOV 13339 kb)

Supplementary material 2 (PDF 937 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tyler, S.E.B. The Work Surfaces of Morphogenesis: The Role of the Morphogenetic Field. Biol Theory 9, 194–208 (2014). https://doi.org/10.1007/s13752-014-0177-8

Download citation

Keywords

  • Bauplan
  • Bioelectromagnetic information
  • Cancer
  • Regeneration
  • Form
  • Morphogenetic field