Skip to main content
Log in

Strategic Analysis of Collaborative Networks in Spodoptera frugiperda (Lepidoptera: Noctuidae) Research for Improved Pest Management Strategies

  • Pest Management
  • Review
  • Published:
Neotropical Entomology Aims and scope Submit manuscript

Abstract

The fall armyworm (FAW) poses a significant global threat to food security, and economics. Timely detection is crucial, and this research explores innovative techniques like data analysis, remote sensing, satellite imagery, and AI with machine learning algorithms for predicting and managing outbreaks. Emphasizing the importance of community engagement and international collaboration, social network analysis (SNA) is employed to uncover collaborative networks in FAW management research. The study analyzes a decade of research, revealing trends, influential institutions, authors, and countries, providing insights for efficient FAW management strategies. The research highlights a growing interest in Spodoptera frugiperda (Smith and Abbott 1797) research, focusing on biological control, chemical insecticides, plant extracts, and pest resistance. Co-Citation analysis identifies key research concepts, while collaboration analysis emphasizes the contributions of actors and institutions, such as China, the USA, and Brazil, with international collaboration playing a vital role. Current research trends involve evolving resistance, insecticidal protein gene discovery, and bio-control investigations. Leveraging insights from collaborative networks is essential for formulating effective strategies to manage fall armyworm and ensure global food security. This comprehensive analysis serves as a valuable resource for researchers and stakeholders, guiding efforts to combat this pervasive agricultural pest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abro Zewdu, Kimathi Emily, de Groote Hugo, Tefera Tadele, Sevgan Subramanian, Niassy Saliou, Kassie Menale (2021) Socioeconomic and impacts of fall armyworm in Ethiopia. PLoS One 16(11):e0257736. https://doi.org/10.1371/journal.pone.0257736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adan M, Tonnang HE, Greve K, Borgemeister C, Goergen G (2023) Use of time series normalized difference vegetation index (NDVI) to monitor fall armyworm (Spodoptera frugiperda) damage on maize production systems in Africa. Geocarto Int 38(1):2186492

    Article  Google Scholar 

  • Agboyi LK, Goergen G, Beseh P, Mensah SA, Clottey VA, Glikpo R, Buddie A, Cafà G, Offord L, Day R, Rwomushana I, Kenis M (2020) Parasitoid complex of fall armyworm, Spodoptera Frugiperda, in Ghana and Benin. Insects 11(2):68. https://doi.org/10.3390/insects11020068

    Article  PubMed  PubMed Central  Google Scholar 

  • Aria M, Cuccurullo C (2017) Bibliometrix: an R-Tool for comprehensive science mapping analysis. J Informetr 11(4):959–975. https://doi.org/10.1016/j.joi.2017.08.007

    Article  Google Scholar 

  • Arthurs S, Dara SK (2019) Microbial biopesticides for invertebrate pests and their markets in the United States. J Invertebr Pathol 165:13–21

    Article  PubMed  Google Scholar 

  • Banerjee R, Bortoli CPD, Huang F, Lamour K, Meagher R, Buntin D, Xinzhi Ni FPF, Reay-Jones SS, Jurat-Fuentes JL (2022) Large genomic deletion linked to field-evolved resistance to Cry1F corn in fall armyworm (Spodoptera Frugiperda) from Florida. Sci Rep 12(1):13580. https://doi.org/10.1038/s41598-022-17603-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barcellos GA, Hanich MR, Pretto VE, Weschenfelder MAG, Horikoshi RJ, Dourado PM, Ovejero RFL, Berger GU, Martinelli S, Head GP, Bernardi O (2023) Characterizing the lethal and sub-lethal effects of genetically modified soybean expressing Cry1A.105, Cry2Ab2, and Cry1Ac insecticidal proteins against Spodoptera species (Lepidoptera: Noctuidae) in Brazil. Pest Manag Sci 79(2):548–559. https://doi.org/10.1002/ps.7225

    Article  CAS  PubMed  Google Scholar 

  • Biondi A, Mommaerts V, Smagghe G, Viñuela E, Zappalà L, Desneux N (2012) The non-target impact of spinosyns on beneficial arthropods. Pest Manag Sci 68(12):1523–1536. https://doi.org/10.1002/ps.3396 

  • Borgatti SP, Ofem B (2010) Social network theory and analysis. Soc Netw Theory Educ Change 17:29

    Google Scholar 

  • Callon M, Courtial JP, Turner WA, Bauin S (1983) From translations to problematic networks: an introduction to co-word analysis. Soc Sci Inf 22(2):191–235. https://doi.org/10.1177/053901883022002003

    Article  Google Scholar 

  • Camacho D, Panizo-LLedot A, Bello-Orgaz G, Gonzalez-Pardo A, Cambria E (2020) The four dimensions of social network analysis: an overview of research methods, applications, and software tools. Information Fusion 63:88–120

  • Campos JM, Martínez LC, Plata-Rueda A, Carneiro LS, Weigand W, Wilcken CF, Zanuncio JC, Serrão JE (2022) Non-proteinaceous salivary compounds of a predatory bug cause histopathological and cytotoxic effects in prey. Toxicon 213:76–82. https://doi.org/10.1016/j.toxicon.2022.04.013

    Article  CAS  PubMed  Google Scholar 

  • Carvalho RA, Omoto C, Field LM, Williamson MS, Bass C (2013) Investigating the molecular mechanisms of organophosphate and pyrethroid resistance in the fall armyworm Spodoptera Frugiperda. PLoS ONE 8(4):e62268. https://doi.org/10.1371/journal.pone.0062268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakroun M, Banyuls N, Bel Y, Escriche B, Ferré J (2016) Bacterial vegetative insecticidal proteins (Vip) from entomopathogenic bacteria. Microbiol Mol Biol Rev 80(2):329–350. https://doi.org/10.1128/mmbr.00060-15

  • Chen X, Palli SR (2023) Development of multiple transgenic CRISPR/Cas9 methods for genome editing in the fall armyworm, Spodoptera frugiperda. J Pest Sci 96(4):1637–1650

  • Chen W, Li Y, Zhang C, Jia F, Zhang M, Wang M, ... & Zhang L (2023) Cold storage effects on biological parameters of Telenomus remus, a promising egg parasitoid of Spodoptera frugiperda, reared on Spodoptera litura eggs. J Pest Sci 96(4):1365–1378

  • Chimweta M, Nyakudya IW, Jimu L, Mashingaidze AB (2020) Fall armyworm [Spodoptera Frugiperda (J.E. Smith)] damage in maize: management options for flood-recession cropping smallholder farmers. Int J Pest Manag 66(2):142–154. https://doi.org/10.1080/09670874.2019.1577514

    Article  Google Scholar 

  • Day R, Abrahams P, Bateman M, Beale T, Clottey V, Cock M, Colmenarez Y, Corniani N, Early R, Godwin J, Gomez J, Moreno PG, Murphy ST, Oppong-Mensah B, Phiri N, Pratt C, Silvestri S, Witt A (2017) Fall armyworm: impacts and implications for Africa. Outlooks Pest Manag 28(5):196–201. https://doi.org/10.1564/v28_oct_02

    Article  Google Scholar 

  • Du, Lei, Yaqin Sun, Shuo Chen, Jiedong Feng, Yindi Zhao, Zhigang Yan, Xuewei Zhang, and Yuchen Bian. 2022. “A novel object detection model based on faster R-CNN for Spodoptera Frugiperda according to feeding trace of corn leaves.” Agric. (Switz.)12(2):248. https://doi.org/10.3390/agriculture12020248

  • EPPO (2020) Spodoptera Frugiperda (LAPHFR)[Datasheet]| EPPO Global Database. EPPO Global Database https://gd.eppo.int/taxon/LAPHFR/distribution. Retrieved (https://gd.eppo.int/taxon/LAPHFR/datasheet)

  • FAO (2023) Impact of COVID-19 on fall armyworm control activities, https://www.Fao.Org/Fall-Armyworm/En,27-12-2022. Retrieved (https://www.fao.org/fall-armyworm/global-action/en/).

  • Farias JR, Andow DA, Horikoshi RJ, Sorgatto RJ, Fresia P, Cesar A, dos Santos, and Celso Omoto. (2014) Field-evolved resistance to Cry1F Maize by Spodoptera Frugiperda (Lepidoptera: Noctuidae) in Brazil. J Crop Prot 64:150–158. https://doi.org/10.1016/j.cropro.2014.06.019

    Article  Google Scholar 

  • Ferreira Filho JBDS, Alves LRA, Gottardo LCB, Georgino M (2010) Dimensionamento do custo econômico representado por Spodoptera Frugiperdana cultura do milho no Brasil. In: Tecnologias, desenvolvimento e integração social; anais. Brasília: SOBER

  • Franceschet M (2011) Collaboration in computer science: a network science approach. JASIST 62(10):1992–2012. https://doi.org/10.1002/asi.21614

    Article  Google Scholar 

  • Freeman LC (1978) Centrality in social networks conceptual clarification. Soc Netw 1(3):215–239. https://doi.org/10.1016/0378-8733(78)90021-7

    Article  Google Scholar 

  • Garlet Cínthia G, Muraro Dionei S, Godoy Daniela N, Cossa Gisele E, Hanich Manoela R, Stacke Regis F, Bernardi Oderlei (2022) Assessing fitness costs of the resistance of Spodoptera Frugiperda (Lepidoptera: Noctuidae) to pyramided Cry1 and Cry2 insecticidal proteins on different host plants. Bull Entom Res Lond 112(5):575–83. https://doi.org/10.1017/S0007485321001152

    Article  CAS  Google Scholar 

  • Goergen G, Lava Kumar P, Sankung SB, Togola A, Tamò M (2016) First report of outbreaks of the fall armyworm Spodoptera Frugiperda (J E Smith) (Lepidoptera, Noctuidae), a new alien invasive pest in West and Central Africa. PLoS ONE 11(10):e0165632. https://doi.org/10.1371/journal.pone.0165632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gouin A, Bretaudeau A, Nam K, Gimenez S, Aury J-M, Duvic B, … Darboux I (2017) Two genomes of highly polyphagous lepidopteran pests (Spodoptera frugiperda, Noctuidae) with different host-plant ranges. Sci Rep 7(1). https://doi.org/10.1038/s41598-017-10461-4

  • Guimapi RA, Niassy S, Mudereri BT, Abdel-Rahman EM, Tepa-Yotto GT, Subramanian S, Mohamed SA, Thunes KH, Kimathi E, Agboka KM, Tamo M (2022) Harnessing data science to improve integrated management of invasive pest species across Africa: an application to Fall armyworm (Spodoptera frugiperda)(JE Smith)(Lepidoptera: Noctuidae). Glob Ecol Conserv 35:e02056

    Google Scholar 

  • Guoping Li, Tingjie Ji, Shengyuan Zhao, Hongqiang Feng, and Kongming %J Plants Wu. (2022) “High-dose assessment of transgenic insect-resistant maize events against major Lepidopteran pests in China.” 11(22):3125

  • Gutirrez-Moreno R, Mota-Sanchez D, Blanco CA, Whalon ME, Henry Terán-Santofimio J, Rodriguez-Maciel C, Difonzo C (2019) Field-evolved resistance of the fall armyworm (Lepidoptera: Noctuidae) to synthetic insecticides in Puerto Rico and Mexico. J Econ Entomol 112(2):792–802. https://doi.org/10.1093/jee/toy372

    Article  CAS  Google Scholar 

  • Han Pu, Shi J, Li X, Wang D, Shen Si, Xinning Su (2014) International collaboration in LIS: global trends and networks at the country and institution level. Scientometrics 98(1):53–72. https://doi.org/10.1007/s11192-013-1146-x

    Article  Google Scholar 

  • Hirsch JE (2005) An index to quantify an individual’s scientific research output. Proc Natl Acad Sci 102(46):16569–16572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang F, Qureshi JA, Meagher RL, Reisig DD, Head GP, Andow DA, Ni X, David Kerns G, Buntin D, Niu Y, Yang F, Dangal V (2014) Cry1F resistance in fall armyworm Spodoptera Frugiperda: single gene versus pyramided Bt maize. PLoS ONE 9(11):e112958. https://doi.org/10.1371/journal.pone.0112958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin J, Liu Y, Liang X, Pei Y, Wan F, Guo J (2022) Regulatory mechanism of transcription factor AhHsf modulates AhHsp70 transcriptional expression enhancing heat tolerance in Agasicles Hygrophila (Coleoptera: Chrysomelidae). Int J Mol Sci 23(6):3210. https://doi.org/10.3390/ijms23063210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kenis M, du Plessis H, Van den Berg J, Ba MN, Goergen G, Kwadjo KE, Baoua I, Tefera T, Buddie A, Cafà G, Offord L, Rwomushana I, Polaszek A (2019) Telenomus remus, a candidate parasitoid for the biological control of Spodoptera Frugiperda in Africa, is already present on the continent. Insects 10(4):92. https://doi.org/10.3390/insects10040092

    Article  PubMed  PubMed Central  Google Scholar 

  • Levy HC, Garcia-Maruniak A, Maruniak JE (2002) Strain identification of Spodoptera frugiperda (Lepidoptera: Noctuidae) insects and cell line: PCR-RFLP of cytochrome oxidase C subunit I gene. Fla Entomol 85:186–190

    Article  CAS  Google Scholar 

  • Li X, Sun C, Meng H, Ma X, Huang G, Xu X (2022) A novel efficient method for land cover classification in fragmented agricultural landscapes using sentinel satellite imagery. J Remote Sens 14(9):2045

    Article  Google Scholar 

  • Liu, Huan, Yumeng Cheng, Qian Wang, Xiaobei Liu, Yu Fu, Yong Zhang, and Julian Chen. (2022) “Push–pull plants in wheat intercropping system to manage Spodoptera Frugiperda.” J Pest Sci 1–15. https://doi.org/10.1007/s10340-022-01547-8

  • Luginbill P (1928) The fall army worm. Nature 121(3054):770–771

    Google Scholar 

  • Maggio DH, Rossetti VZ, Santos LMA, Carmezini FL, Corrêa AS (2022) A molecular marker to identify Spodoptera Frugiperda (JE Smith) DNA in predators’ gut content. Insects 13(7):635. https://doi.org/10.3390/insects13070635

    Article  PubMed  PubMed Central  Google Scholar 

  • Malaquias JB, Ferreira CP, de Francisco S, Ramalho WAC, Godoy JKS, Pachú CO, de Dyrson O, Neto A, Padovez FEO, Silva LB (2022) Modeling the resistance evolution to insecticides driven by Lepidopteran species competition in cotton, soybean, and corn crops. Biology 11(9):1354. https://doi.org/10.3390/biology11091354

    Article  PubMed  PubMed Central  Google Scholar 

  • Marshakova SI (1973) System of document connections based on references. Scientific and Technical Information Serial of VINITI 6(2):3

  • Montezano DG, Specht A, Sosa-Gómez DR, Roque-Specht VF, Sousa-Silva JC, Paula-Moraes SV, Peterson JA, Hunt TE (2018) Host plants of Spodoptera Frugiperda (Lepidoptera: Noctuidae) in the Americas. Afr Entomol 26(2):286–300

    Article  Google Scholar 

  • Muraro DS, Salmeron E, Cruz JVS, Amaral FSA, Guidolin AS, Nascimento ARB, Malaquias JB, Bernardi O, Omoto C (2022) Evidence of field-evolved resistance in Spodoptera Frugiperda (Lepidoptera: Noctuidae) to emamectin benzoate in Brazil. J Crop Prot 162:106071. https://doi.org/10.1016/j.cropro.2022.106071

    Article  CAS  Google Scholar 

  • Nagoshi RN (2010) The fall armyworm triose phosphate isomerase (Tpi) gene as a marker of strain identity and interstrain mating. Ann Entomol Soc Am 103:283–292

    Article  CAS  Google Scholar 

  • Newman MEJ (2004) Coauthorship networks and patterns of scientific collaboration. Proc Natl Acad Sci USA 101(SUPPL. 1):5200–5205. https://doi.org/10.1073/pnas.0307545100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okuma DM, Cuenca A, Nauen R, Omoto C (2022) Large-scale monitoring of the frequency of ryanodine receptor target-site mutations conferring diamide resistance in Brazilian field populations of fall armyworm, Spodoptera Frugiperda (Lepidoptera: Noctuidae). Insects 13(7):626. https://doi.org/10.3390/insects13070626

    Article  PubMed  PubMed Central  Google Scholar 

  • Oliveira NC, Phelan L, Labate CA, Cônsoli FL (2022) Non-targeted metabolomics reveals differences in the gut metabolic profile of the fall armyworm strains when feeding different food sources. J Insect Physiol 139:104400. https://doi.org/10.1016/j.jinsphys.2022.104400

    Article  CAS  PubMed  Google Scholar 

  • Padovez O, Elias F, Kanno RH, Zambon GZ, Omoto C, Guidolin AS (2022) The cost of resistance to diamide insecticide varies with the host plant in Spodoptera Frugiperda (Lepidoptera: Noctuidae). J Econ Entomol 115(6):2041–2050. https://doi.org/10.1093/jee/toac160

    Article  CAS  Google Scholar 

  • Pavinato VAC, Martinelli S, de Lima PF, Zucchi MI, Omoto C (2013) Microsatellite markers for genetic studies of the fall armyworm, Spodoptera frugiperda. Genet Mol Res 12:370–380

    Article  CAS  PubMed  Google Scholar 

  • Prowell DP, McMichael M, Silvain JF (2004) Multilocus genetic analysis of host use, introgression, and speciation in host strains of fall armyworm (Lepidoptera: Noctuidae). Ann Entomol Soc Am 97:1034–1044

    Article  CAS  Google Scholar 

  • Rane R, Walsh TK, Lenancker P, Gock A, Dao TH, Nguyen VL, ... & Tay WT (2023) Complex multiple introductions drive fall armyworm invasions into Asia and Australia. Sci Rep 13(1):660

  • Rossetto DE, Bernardes RC, Borini FM, Gattaz CC (2018) Structure and evolution of innovation research in the last 60 years: review and future trends in the field of business through the citations and co-citations analysis. Scientometrics 115(3):1329–1363

    Article  Google Scholar 

  • Rwomushana I (2019) Spodoptera frugiperda (fall armyworm). Invasive Species Compendium, (29810)

  • Salamati P, Soheili F (2016) Social network analysis of Iranian researchers in the field of violence. Chin J Traumatol - Engl Ed 19(5):264–270. https://doi.org/10.1016/j.cjtee.2016.06.008

    Article  Google Scholar 

  • Sathyan Thiravidamani, Jayakanthan Mannu, Mohankumar Subbarayalu, Balasubramani Venkatasamy, Kokiladevi Eswaran, Ravikesavan Rajasekaran, Kennedy John Samuel, Sathiah Natarajan (2022) Genome profiling of an indigenous Bacillus Thuringiensis isolate, T405 toxic against the fall armyworm, Spodoptera Frugiperda (J.E. Smith) (Lepidoptera: Noctuidae). Microb Pathog 173:105820. https://doi.org/10.1016/j.micpath.2022.105820

    Article  CAS  PubMed  Google Scholar 

  • Schlum KA, Lamour K, de Bortoli CP, Banerjee R, Meagher R et al (2021) Whole genome comparisons reveal panmixia among fall armyworm (Spodoptera frugiperda) from diverse locations. BMC Genom 22:179

    Article  CAS  Google Scholar 

  • Schroeder L, Mar TB, Haynes JR, Wang R, Wempe L, Goodin MM (2019) Host range and population survey of Spodoptera Frugiperda Rhabdovirus. Virol J 93(6):e02028-e2118. https://doi.org/10.1128/jvi.02028-18

    Article  CAS  Google Scholar 

  • Senthil-Nathan S (2013) Physiological and biochemical effect of neem and other Meliaceae plants secondary metabolites against Lepidopteran insects. Front Physiol 4. https://doi.org/10.3389/fphys.2013.00359

  • Smith JE, Abbott J (1797) The natural history of the rarer lepidopterous insects of Georgia: including their systematic characters, the particulars of their several metamorphoses, and the plants on which they feed. 2:101–214, pl. 51–104

  • Sousa ACG, Souza BHS, Marchiori PER, Bôas LVV (2022) Characterization of priming, induced resistance, and tolerance to Spodoptera Frugiperda by silicon fertilization in maize genotypes. J Pest Sci 95(3):1387–1400. https://doi.org/10.1007/s10340-021-01468-y

    Article  CAS  Google Scholar 

  • Storer NP, Babcock JM, Schlenz M, Meade T, Thompson GD, Bing JW, Huckaba RM (2010) Discovery and characterization of field resistance to Bt maize: Spodoptera Frugiperda (Lepidoptera: Noctuidae) in Puerto Rico. J Econ Entomol 103(4):1031–1038. https://doi.org/10.1603/EC10040

    Article  PubMed  Google Scholar 

  • Tabashnik B, Carrière Y (2017) Surge in insect resistance to transgenic crops and prospects for sustainability. Nat Biotechnol 35:926–935. https://doi.org/10.1038/nbt.3974

  • Tay WT, Rane RV, Padovan A, Walsh TK, Elfekih S, Downes S, Nam K, D’Alençon E, Zhang J, Yidong Wu, Nègre N, Kunz D, Kriticos DJ, Czepak C, Otim MH, Gordon KHJ (2022) Global population genomic signature of Spodoptera Frugiperda (fall armyworm) supports complex introduction events across the old world. Commun Biol 5(1):297. https://doi.org/10.1038/s42003-022-03230-1

    Article  PubMed  PubMed Central  Google Scholar 

  • Tomé MP, Weber ID, Garcia AG, Jamielniak JA, Wajnberg E, Hay-Roe MM, Godoy WA (2023) Modeling fall armyworm resistance in Bt-maize areas during crop and off-seasons. J Pest Sci 96(4):1539–1550

  • Turchen LM, Cosme Jr L, Yack JE, Guedes RNC (2023) What’s shaking for caterpillars? Leaf-borne vibratory stimuli and behavioral responses in the fall armyworm, Spodoptera frugiperda. J Pest Sci 96(4):1483–1496

  • Valicente, Fernando Hercos, Caio Leao Dantas, Joaquim Pedro Vieira Resende, Priscila Marques De Paiva, Camila Fernandes De Souza, Priscilla Tavares Nascimento, Cleidiane Rodrigues De Oliveira, Katia Gisele Brasil Boregas, Francisco Andres Rodriguez-Dimate, and Frederick Mendes Aguiar. (2022) “A 6-year field monitoring of fall armyworm, Spodoptera Frugiperda, in trasgenic Bt Maize in Brazil.” RBE 66(2). https://doi.org/10.1590/1806-9665-RBENT-2021-0121

  • Van Oers MM, Pijlman GP, Vlak JM (2014) Thirty years of baculovirus-insect cell protein expression: from dark horse to mainstream technology. J Gen Virol 96(Pt_1):6–23. https://doi.org/10.1099/vir.0.067108-0

  • Vanni T, Mesa-Frias M, Sanchez-Garcia R, Roesler R, Schwartsmann G, Goldani MZ, Foss AM (2014) International Scientific Collaboration in HIV and HPV: a network analysis. PLoS ONE 9(3):e93376. https://doi.org/10.1371/journal.pone.0093376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang C, Zhang S, Guo MB, Hou XQ, Yang B, Wang GR (2022) Optimization of a pheromone lure by analyzing the peripheral coding of sex pheromones of Spodoptera Frugiperda in China. Pest Manag Sci 78(7):2995–3004. https://doi.org/10.1002/ps.6924

    Article  CAS  PubMed  Google Scholar 

  • Wei F, Zhang G (2020) A document co-citation analysis method for investigating emerging trends and new developments: a case of twenty-four leading business journals. Inf Res 25(1):1

    Google Scholar 

  • Yi X, Zhang J, Cai M, Li Y (2020) Social network analysis and modeling for invasive pest management. Biol Invasions 22(3):791–809

    Google Scholar 

  • Yu Qi, Shao H, He P, Duan Z (2013) World Scientific Collaboration in Coronary Heart Disease Research. Int J Cardiol 167(3):631–639. https://doi.org/10.1016/j.ijcard.2012.09.134

    Article  PubMed  Google Scholar 

  • Zhang S, Zhang C, Park DS, Yoon S (2023) Machine learning and artificial intelligence for smart agriculture, volume II. Front Plant Sci 14:1166209

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao, Yun Xia, Jing Mei Huang, Huan Ni, Di Guo, Feng Xia Yang, Xin Wang, Shun Fan Wu, and Cong Fen Gao. 2020. “Susceptibility of fall armyworm, Spodoptera Frugiperda (J.E.Smmith), to eight insecticides in China, with special reference to lambda-cyhalothrin.” PESTIC BIOCHEM PHYS 168:104623. https://doi.org/10.1016/j.pestbp.2020.104623.

  • Zhong Y, Xie M, Di Z, Li F, Chen J, Kong X, Lin L, Weihua Su, Lina Xu, Zhang F, Tang R, Chen H (2022) PBP1 plays key roles in sex pheromone reception of the fall armyworm. Int J Biol Macromol 214:162–169. https://doi.org/10.1016/j.ijbiomac.2022.06.068

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Hua W (2017) Visualizing the knowledge domain of sustainable development research between 1987 and 2015: a bibliometric analysis. Scientometrics 110(2):893–914. https://doi.org/10.1007/s11192-016-2187-8

    Article  Google Scholar 

  • Zhu GH, Chereddy SCRR, Howell JL, Palli SR (2020) Genome editing in the fall armyworm, Spodoptera Frugiperda: multiple SgRNA/Cas9 method for identification of knockouts in one generation. Insect Biochem Mol Biol 122:103373. https://doi.org/10.1016/j.ibmb.2020.103373

    Article  CAS  PubMed  Google Scholar 

  • Zuim V, Godoi CTD, Marques VM, Haro MM, Gontijo LM, Raul NC, Guedes (2023) Bt-Maize in Neotropical arthropod food webs: community-stress or lack thereof? Entomol Exp Appl 171(2):116–128. https://doi.org/10.1111/eea.13254

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I extend my sincere gratitude to CSIR, India, for their invaluable support throughout this research endeavor. I would also like to express my heartfelt appreciation to Mr. Adarsh Raguvanshi and my esteemed colleagues for their continuous moral support and encouragement.

Funding

CSIR-India provided financial assistance for conducting the research under the file number CSIR-File No: 31/042(0034)/2019-EMR I) (excluding publication fund assistance). 

Author information

Authors and Affiliations

Authors

Contributions

PK led the research, including conceptualization, methodology design, and project supervision. PK conducted data collection, analysis, and interpretation under the guidance of LP and VK. LP and VK contributed to data interpretation and provided critical manuscript revisions. All authors participated in drafting the manuscript and approved the final version for submission.

Corresponding author

Correspondence to Prajith Karakkottil.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Edited by Tavvs Micael Alves

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karakkottil, P., Pulamte, L. & Kumar, V. Strategic Analysis of Collaborative Networks in Spodoptera frugiperda (Lepidoptera: Noctuidae) Research for Improved Pest Management Strategies. Neotrop Entomol (2024). https://doi.org/10.1007/s13744-024-01146-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13744-024-01146-5

Keywords

Navigation