Skip to main content
Log in

Side Effects of Neem Oil on the Midgut Endocrine Cells of the Green Lacewing Ceraeochrysa claveri (Navás) (Neuroptera: Chrysopidae)

  • Systematics, Morphology and Physiology
  • Published:
Neotropical Entomology Aims and scope Submit manuscript

Abstract

We described the ultrastructure of Ceraeochrysa claveri (Navás) midgut endocrine cells in larva, pupa, and adult, and evaluated the side effects of ingested neem oil, a botanical insecticide obtained from the seeds of the neem tree (Azadirachta indica), on these cells. During the larval period, C. claveri were fed (ad libitum) Diatraea saccharalis (F.) eggs treated with neem oil at concentrations of 0.5%, 1%, or 2%. Transmission electron microscopy showed that two subtypes of endocrine cells, namely granular and vesicular, occurred in the midgut epithelium during the three stages of the life cycle. Both cell types did not reach the midgut lumen and were positioned basally in the epithelium. The endocrine cells did not show extensive infoldings of the basal plasma membrane, and there were numerous secretory granules in the basal region of the cytoplasm. In the granular endocrine cells, the granules were completely filled with a dense matrix. In the vesicular endocrine cells, the main secretory products consisted of haloed vesicles. Ultrastructural examination indicated that only the granular endocrine cells exhibited signs of morphologic changes of cell injury present in all life cycle stages after the larvae were chronically exposed to neem oil by ingestion. The major cellular damage consisted of dilatation and vesiculation of the rough endoplasmic reticulum and the development of smooth endoplasmic reticulum and mitochondrial swelling. Our data suggest that cytotoxic effects on midgut endocrine cells can contribute to a generalized disruption of the physiological processes in this organ due to a general alteration of endocrine function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2
Fig 3

Similar content being viewed by others

References

  • Aki T, Nara A, Uemura K (2012) Cytoplasmic vacuolization during exposure to drugs and other substances. Cell Biol Toxicol 28:125–131

    Article  CAS  PubMed  Google Scholar 

  • Albuquerque GS, Tauber CA, Tauber MJ (2001) Chrysoperla externa and Ceraeochrysa spp.: potential for biological control in the New World tropics and subtropics. In: McEwen PK, New TR, Whittington AE (eds) Lacewings in the crop environment. Cambridge University Press, Cambridge, pp 408–423

    Chapter  Google Scholar 

  • Andries JC (1976) Presence de deux types cellularies endocrines et d'un type exocrine au sein du mesenteron de la larve D'Aeshna cyanea Müller (Odonata: Aeshnidae). Int J Insect Morphol Embryol 5:393–407

    Article  Google Scholar 

  • Azevedo DO, Neves CA, Mallet JRS, Gonçalves TCM, Zanuncio JC, Serrão JE (2009) Notes on midgut ultrastructure of Cimex hemipterus (Hemiptera: Cimicidae). J Med Entomol 46:435–441

    Article  PubMed  Google Scholar 

  • Billingsley PF (1990) The midgut ultrastructure of hematophagous insects. Ann Rev Entomol 35:219–248

    Article  Google Scholar 

  • Brown MR, Crim JW, Lea AO (1986) FMRFamide- and pancreatic polypeptide-like immunoreactivity of endocrine cells in the midgut of a mosquito. Tissue Cell 18:419–428

    Article  CAS  PubMed  Google Scholar 

  • Brown MR, Raikhel AS, Lea AO (1985) Ultrastructure of midgut endocrine cells in the adult mosquito, Aedes aegypti. Tissue Cell 17:709–721

    Article  CAS  PubMed  Google Scholar 

  • Cheville NF (1994) Ultrastructural pathology: an introduction to interpretation. Iowa State University Press, Ames, p 946

    Google Scholar 

  • Cheville NF (2009) Ultrastructural pathology: the comparative cellular basis of disease, 2nd edn. Willey-Blackwell, Ames, p 973

    Book  Google Scholar 

  • Cordeiro EMG, Corrêa AS, Venzon M, Guedes RNC (2010) Insecticide survival and behavioral avoidance in the lacewings Chrysoperla externa and Ceraeochrysa cubana. Chemosphere 81:1352–1357

    Article  CAS  PubMed  Google Scholar 

  • Correia AA, Wanderley-Teixeira V, Teixeira AAC, Oliveira JV, Torres JB (2009) Morfologia do canal alimentar de lagartas de Spodoptera frugiperda (J E Smith) (Lepidoptera: Noctuidae) alimentadas com folhas tratadas com nim. Neotrop Entomol 38:83–91

    Article  Google Scholar 

  • De Freitas S, Penny ND (2001) The green lacewings (Neuroptera: Chrysopidae) of Brazilian agro-ecosystems. Proc Calif Acad Sci 52:245–395

    Google Scholar 

  • Fujita T, Kobayashi S (1977) Structure and function of gut endocrine cells. Int Rev Cytol Suppl 6:187–233

    CAS  PubMed  Google Scholar 

  • Gül N, Sayar H, Özsoy N, Ayvali C (2001) A study on endocrine cells in the midgut of Agrotis segetum (Denn. And Schiff.) (Lepidoptera: Noctuidae). Turk J Zool 25:193–197

    Google Scholar 

  • Hutterer F, Schaffner F, Klion FM, Popper H (1968) Hypertrophic, hypoactive smooth endoplasmic reticulum: a sensitive indicator of hepatotoxicity exemplified by dieldrin. Science 161:1017–1019

    Article  CAS  PubMed  Google Scholar 

  • Leite ACR, Evangelista LG (2001) Ultrastructure of endocrine cells from the abdominal midgut epithelium of Lutzomyia longipalpis (Diptera: Psychodidae). J Med Entomol 38:749–752

    Article  CAS  PubMed  Google Scholar 

  • Levy SM, Falleiros AMF, Gregório EA, Arrebola NR, Toledo LA (2004) The larval midgut of Anticarsia gemmatalis (Hübner) (Lepidoptera: Noctuidae): light and electron microscopy studies of the epithelial cells. Braz J Biol 64:633–638

    Article  CAS  PubMed  Google Scholar 

  • Ling S, Zhang R (2011) Effect of fipronil on brain and muscle ultrastructure of Nilaparvata lugens (Stal) (Homoptera: Delphacidae). Ecotoxicol Environ Saf 74:1348–1354

    Article  CAS  PubMed  Google Scholar 

  • Lü M, Wu WJ, Liu HX (2010) Effects of fraxinellone on the midgut ultrastructural changes of Mythimna separata Walker. Pesticide Biochem Phys 98:263–268

    Article  Google Scholar 

  • Medina P, Smagghe G, Budia F, Tirry L, Viñuela E (2003) Toxicity and absorption of azadirachtin, diflubenzuron, pyriproxyfen, and tebufenozide after topical application in predatory larvae of Chrysoperla carnea (Neuroptera: Chrysopidae). Environ Entomol 32:196–203

    Article  CAS  Google Scholar 

  • Meurant K, Sernia C, Rembold H (1994) The effects of azadirachtin A on the morphology of the ring complex of Lucilia cuprina (Wied) larvae (Diptera: Insecta). Cell Tissue Res 275:247–254

    Article  CAS  Google Scholar 

  • Mordue (Luntz) AJ, Blackwell A (1993) Azadirachtin: an update. J Insect Physiol 39:903–924

    Article  Google Scholar 

  • Mordue (Luntz) AJ, Cottee PK, Evans KA (1985) Azadirachtin: its effect on gut motility, growth and moulting in Locusta. Physiol Entomol 10:431–437

    Article  Google Scholar 

  • Mordue (Luntz) AJ, Nisbet AJ (2000) Azadirachtin from the neem tree Azadirachta indica: its action against insects. An Soc Entomol Bras 29:615–632

    Article  Google Scholar 

  • Mordue (Luntz) AJ, Simmonds MSJ, Ley SV, Blaney WM, Mordue W, Nasiruddin M, Nisbet AJ (1998) Actions of azadirachtin, a plant allelochemical, against insects. Pestic Sci 54:277–284

    Article  Google Scholar 

  • Morgan ED (2009) Azadirachtin, a scientific gold mine. Bioorg Med Chem 17:4096–4105

    Article  CAS  PubMed  Google Scholar 

  • Nasiruddin M, Mordue (Luntz) AJ (1993) The effect of azadirachtin on the midgut histology of the locusts Schistocerca gregaria and Locusta migratoria. Tissue Cell 25:875–884

    Article  CAS  PubMed  Google Scholar 

  • Ndione RD, Faye O, Ndiaye M, Dieye A, Afoutou JM (2007) Toxic effects of neem products (Azadirachta indica A. Juss) on Aedes aegypti Linnaeus 1762 larvae. Afr J Biotechnol 6:2846–2854

    CAS  Google Scholar 

  • Neves CA, Bhering LL, Serrão JE, Gitirana LB (2002) FMRFamide-like midgut endocrine cells during the metamorphosis in Melipona quadrifasciata anthidioides (Hymenoptera, Apidae). Micron 33:453–460

    Article  CAS  PubMed  Google Scholar 

  • Neves CA, Gitirana LB, Serrão JE (2003) Ultrastructure of the midgut endocrine cells in Melipona quadrifasciata anthidioides (Hymenoptera, Apidae). Braz J Biol 63:683–690

    Article  CAS  PubMed  Google Scholar 

  • Pappas ML, Broufas GD, Koveos DS (2011) Chrysopid predators and their role in biological control. J Entomol 8:301–326

    Article  Google Scholar 

  • Paschen W, Frandsen A (2001) Endoplasmic reticulum dysfunction—a common denominator for cell injury in acute and degenerative diseases of the brain? J Neurochem 79:719–725

    Article  CAS  PubMed  Google Scholar 

  • Principi MM, Canard M (1984) Feeding habits. In: Canard M, Séméria Y, New TR (eds) Biology of Chrysopidae. Junk, The Hague, pp 76–92

    Google Scholar 

  • Qi B, Gordon G, Gimme W (2001) Effects of neem-fed prey on the predacious insects Harmonia conformis (Boisduval) (Coleoptera: Coccinellidae) and Mallada signatus (Schneider) (Neuroptera: Chrysopidae). Biol Control 22:185–190

    Article  Google Scholar 

  • Raes H, Verbeke M (1994) Light and electron microscopical study of two types of endocrines cell in the midgut of the adult worker honeybee (Apis mellifera). Tissue Cell 26:223–230

    Article  CAS  PubMed  Google Scholar 

  • Rembold H (1989) Azadirachtins: their structure and mode of action. In: Arnason JT, Philogene BJR, Morand P (eds) Insecticides of plant origin. American Chemical Society, Washington DC, pp 150–163

    Chapter  Google Scholar 

  • Rost-Roszkowska MM, Chechelska A, Fradczak M, Salitra K (2008) Ultrastructure of two types of endocrine cells in the midgut epithelium of Spodoptera exiqua Hübner, 1808 (Insecta, Lepidoptera, Noctuidae). Zool Pol 53:27–35

    Google Scholar 

  • Sayah F (2002) Ultrastructural changes in the corpus allatum after azadirachtin and 20-hydroxyecdysone treatment in adult females of Labidura riparia (Dermaptera). Tissue Cell 34:53–62

    Article  CAS  PubMed  Google Scholar 

  • Schmutterer H (1990) Properties and potential of natural pesticides from the neem tree, Azadirachta indica. Ann Rev Entomol 35:271–297

    Article  CAS  Google Scholar 

  • Scudeler EL, Santos DC (2013) Effects of neem oil (Azadirachta indica A. Juss) on midgut cells of predatory larvae Ceraeochrysa claveri (Navás, 1911) (Neuroptera: Chrysopidae). Micron 44:125–132

    Article  CAS  PubMed  Google Scholar 

  • Sehnal F, Zitnan D (1996) Midgut endocrine cells. In: Lehane MJ, Billingsley PF (eds) Biology of the insect midgut. Chapman & Hall, London, pp 55–85

    Chapter  Google Scholar 

  • Trumm P, Dorn A (2000) Effects of azadirachtin on the regulation of midgut peristalsis by the stomatogastric nervous system in Locusta migratoria. Phytoparasitica 28:7–26

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the Electron Microscopy Center of the Bioscience Institute, UNESP. This work was supported by the Fundação de Amparo à Pesquisa do Estado de São Paulo (2010/03606-9) and Conselho Nacional de Desenvolvimento Científico e Tecnológico.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E L Scudeler.

Additional information

Edited by Roberto Romani – University of Perugia

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scudeler, E.L., Santos, D.C. Side Effects of Neem Oil on the Midgut Endocrine Cells of the Green Lacewing Ceraeochrysa claveri (Navás) (Neuroptera: Chrysopidae). Neotrop Entomol 43, 154–160 (2014). https://doi.org/10.1007/s13744-013-0191-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13744-013-0191-8

Keywords

Navigation