Skip to main content
Log in

Synthesis, in silico guided DNA-interaction analysis, in vitro anti-oxidant evaluation, and antibacterial assay of 4-amino-5-(2-benzylidenehydrazinyl)-2H-1,2,4-triazole-3(4H)-thiones

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

The current research contains synthesis, DNA-interaction analysis, in vitro anti-oxidant evaluation, and antibacterial assay of triazole-azomethine hybrids. Consequently, the synthesized hybrids were subjected to molecular docking (MD), density functional theory (DFT) guided experimental DNA-interaction studies, in vitro DPPH quenching, and bactericidal assay. Subsequently, the screened hybrids displayed higher DNA binding abilities in DNA-interaction studies. Notably, the hybrids bearing 4-hydroxy-), 2-hydroxy-4-methoxy-), and 4-bromo-) groups displayed higher binding ability in the DNA grooves with respective interaction strengths in the range of 3.43–6.43 × 10–3 M−1 higher than the reference Cis-platin (3.142 × 10–3 M−1) augmented by MD and DFT analysis. Similarly, DFT-guided UV–visible spectroscopy-based anti-oxidant assay revealed potent oxidative nature of the screened hybrids. DPPH free radical scavenging ability in terms of IC50 values falls within a narrow range of 22.30–34.22 μM. The screened hybrids bearing 4-hydroxy-), 3,4-dihydroxy-), and 2,3,4-trihydroxy-) groups display highest DPPH scavenging potential with respective IC50 values of 34.22 μM, 32.11 μM, and 29.30 μM. Moreover, the synthesized hybrids were evaluated against gram-negative and positive bacterial strains, indicating their inhibitory potential as zone of inhibition (ZOI). Briefly, the screened hybrid bearing 2,3,4-trihydroxy-) group displayed ZOI (21 mm) against Pseudomonas aeruginosa (gram-negative strain) higher than Benzylpenicillin (18 mm). The remaining hybrids possess inhibitory potential comparable to the reference. Conversely, the screened hybrids showed varied responses against Staphylococcus aureus (gram-positive strain), with highest ZOI (16 mm) displayed by the hybrid with 4-hydroxy-) group. Thus, the obtained ZOI suggests the potent hybrids to be explored further as effective motifs against gram-negative and positive bacterial strains.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. Afrin, P.C.A. Swamy, Coord. Chem. Rev. 494, 215327 (2023). https://doi.org/10.1016/j.ccr.2023.215327

    Article  CAS  Google Scholar 

  2. E. Raczuk, B. Dmochowska, J.S. Fiertek, J. Madaj, Molecules 27(3), 787 (2022). https://doi.org/10.3390/molecules27030787

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. H. Aziz, A. Saeed, F. Jabeen, M.A. Khan, A.U. Rehman, M.Q. Khan, M. Saleem, J. Mol. Struct. 1278, 134924 (2023). https://doi.org/10.1016/j.molstruc.2023.134924

    Article  CAS  Google Scholar 

  4. H. Aziz, A. Saeed, F. Jabeen, A. Basit, I.Z. Qureshi, A. Aziz, A. Haroon, A.U. Rehman, Chin. J. Struct. Chem. 40(3), 291–300 (2021). https://doi.org/10.14102/j.cnki.0254-5861.2011-2871

    Article  CAS  Google Scholar 

  5. A. Kajal, S. Bala, S. Kamboj, N. Sharma, V. Saini, J. Cat. 2013, 893512 (2013). https://doi.org/10.1155/2013/893512

    Article  Google Scholar 

  6. W. Qin, S. Long, M. Panunzio, S. Biondi, Molecules 18(10), 12264–12289 (2013). https://doi.org/10.3390/molecules181012264

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. S. Malladi, A.M. Isloor, S. Isloor, D.S. Akhila, H.K. Fun, Arab. J. Chem. 6(3), 335–340 (2013). https://doi.org/10.1016/j.arabjc.2011.10.009

    Article  CAS  Google Scholar 

  8. A. Jarrahpour, D. Khalili, E. De Clercq, C. Salmi, J.M. Brunel, Molecules 12(8), 1720–1730 (2007). https://doi.org/10.3390/12081720

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. N. Vukovic, S. Sukdolak, S. Solujic, N. Niciforovic, Food Chem. 120(4), 1011–1018 (2010). https://doi.org/10.1016/j.foodchem.2009.11.040

    Article  CAS  Google Scholar 

  10. K.P. Rakesh, H.M. Manukumar, D.C. Gowda, Bioorg. Med. Chem. Lett. 25(5), 1072–1077 (2015). https://doi.org/10.1016/j.bmcl.2015.01.010

    Article  PubMed  CAS  Google Scholar 

  11. A. Pandey, R. Rajavel, S. Chandraker, D. Dash, J. Chem. 9(4), 2524–2531 (2012). https://doi.org/10.1155/2012/145028

    Article  CAS  Google Scholar 

  12. V. Judge, B. Narasimhan, M. Ahuja, D. Sriram, P. Yogeeswari, E. De Clercq, C. Pannecouque, J. Balzarini, Med. Chem. Res. 21, 1451–1470 (2012). https://doi.org/10.1007/s00044-011-9662-9

    Article  CAS  Google Scholar 

  13. C.M. Da Silva, D.L. da Silva, L.V. Modolo, R.B. Alves, M.A. de Resende, C.V.B. Martins, A. de Fátima, J. Adv. Res. 2(1), 1–8 (2011). https://doi.org/10.1016/j.jare.2010.05.004

    Article  Google Scholar 

  14. A. Rauf, A. Shah, K.S. Munawar, A.A. Khan, R. Abbasi, M.A. Yameen, A.M. Khan, A.R. Khan, I.Z. Qureshi, H.B. Kraatz, Z.U. Rehman, J. Mol. Struct. 1145, 132–140 (2017). https://doi.org/10.1016/j.molstruc.2017.05.098

    Article  ADS  CAS  Google Scholar 

  15. I. Sheikhshoaie, A. Akbari, S.Y. Ebrahimipour, Arab. J. Chem. 6(4), 407–411 (2013). https://doi.org/10.1016/j.arabjc.2010.10.019

    Article  CAS  Google Scholar 

  16. R. Borgohain, A.K. Guha, S. Pratihar, J.G. Handique, Comput. Theor. Chem. 1060, 17–23 (2015). https://doi.org/10.1016/j.comptc.2015.02.014

    Article  CAS  Google Scholar 

  17. K. Karrouchi, L. Chemlal, J. Taoufik, Y. Cherrah, S. Radi, M.E.A. Faouzi, M. Ansar, Ann. Pharm. Fr. 74(6), 431–438 (2016). https://doi.org/10.1016/j.pharma.2016.03.005

    Article  PubMed  CAS  Google Scholar 

  18. S.A. Deodware, U.B. Barache, U.B. Chanshetti, D.J. Sathe, U.P. Ashok, S.H. Gaikwad, S.P. Kollur, Results Chem. 3, 100162 (2021). https://doi.org/10.1016/j.rechem.2021.100162

    Article  CAS  Google Scholar 

  19. V.D. da Silva, B.M. de Faria, E. Colombo, L. Ascari, G.P.A. Freitas, L.S. Flores, Y. Cordeiro, L. Romão, C.D. Buarque, Bioorg. Chem. 83, 87–97 (2019). https://doi.org/10.1016/j.bioorg.2018.10.003

    Article  PubMed  CAS  Google Scholar 

  20. M. Amir, K. Shikha, Eur. J. Med. Chem. 39(6), 535–545 (2004). https://doi.org/10.1016/j.ejmech.2004.02.008

    Article  PubMed  CAS  Google Scholar 

  21. P. Tyagi, S. Chandra, B.S. Saraswat, D. Yadav, Spectrochim. Acta A 145, 155–164 (2015). https://doi.org/10.1016/j.saa.2015.03.034

    Article  ADS  CAS  Google Scholar 

  22. B. Miroslaw, T. Plech, M. Wujec, J. Mol. Struct. 1083, 187–193 (2015). https://doi.org/10.1016/j.molstruc.2014.11.060

    Article  ADS  CAS  Google Scholar 

  23. M. Koparir, C. Orek, A.E. Parlak, A. Söylemez, P. Koparir, M. Karatepe, S.D. Dastan, Eur. J. Med. Chem. 63, 340–346 (2013). https://doi.org/10.1016/j.ejmech.2013.02.025

    Article  PubMed  CAS  Google Scholar 

  24. A. Özdemir, G.T. Zitouni, Z.A. Kaplancikli, P. Chevallet, J. Enz. Inhib. Med. Chem. 22(4), 511–516 (2007). https://doi.org/10.1080/14756360601178424

    Article  CAS  Google Scholar 

  25. R.Y. Jin, C.Y. Zeng, X.H. Liang, X.H. Sun, Y.F. Liu, Y.Y. Wang, S. Zhou, Bioorg. Chem. 80, 253–260 (2018). https://doi.org/10.1016/j.bioorg.2018.06.030

    Article  PubMed  CAS  Google Scholar 

  26. Pooja, V. Gupta, S. Singh, Y.k. Gupta, J. Ultra Chem. 13(6), 132–139 (2017). https://doi.org/10.22147/juc/130601

    Article  CAS  Google Scholar 

  27. R.R. Pillai, K. Karrouchi, S. Fettach, S. Armaković, S.J. Armaković, Y. Brik, J. Taoufik, S. Radi, M.E.A. Faouzi, M. Ansar, J. Mol. Struct. 1177, 47–54 (2019). https://doi.org/10.1016/j.molstruc.2018.09.037

    Article  ADS  CAS  Google Scholar 

  28. H. Aziz, A. Saeed, F. Jabeen, A. Wadood, A.U. Rehman, M. Majid, I.U. Haq, J. Iran. Chem. Soc. 16, 2143–2157 (2019). https://doi.org/10.1007/s13738-019-01686-3

    Article  CAS  Google Scholar 

  29. H. Aziz, A. Saeed, A.U. Rehman, F. Jabeen, B. Nasir, A.U. Khan, I.U. Khan, J. Iran. Chem. Soc. 18, 1965–1977 (2021). https://doi.org/10.1007/s13738-021-02156-5

    Article  CAS  Google Scholar 

  30. E. Jabeen, N.K. Janjua, S. Ahmed, I. Tahiri, M. Kashif, A. Javed, Inorg. Chim. Acta 496, 119048 (2019). https://doi.org/10.1016/j.ica.2019.119048

    Article  CAS  Google Scholar 

  31. E. Jabeen, N.K. Janjua, S. Ahmed, I. Murtaza, T. Ali, S. Hameed, Spectrochim. Acta A 171, 432–438 (2017). https://doi.org/10.1016/j.saa.2016.08.035

    Article  ADS  CAS  Google Scholar 

  32. M. Balouiri, M. Sadiki, S.K. Ibnsouda, J. Pharm. Anal. 6(2), 71–79 (2016). https://doi.org/10.1016/j.jpha.2015.11.005

    Article  PubMed  Google Scholar 

  33. K.O. Fagbemi, D.A. Aina, M.O.A. Isijola, K.K. Naidoo, R.M. Coopoosamy, O.O. Olajuyigbe, Sci. Rep. 12(1), 9432 (2022). https://doi.org/10.1038/s41598-022-13716-x

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  34. Z. Peng, G. Wang, Q.H. Zeng, Y. Li, Y. Wu, H. Liu, J.J. Wang, Y. Zhao, Food Chem. 341(2), 128265 (2021). https://doi.org/10.1016/j.foodchem.2020.128265

    Article  PubMed  CAS  Google Scholar 

  35. S. Qin, W. Xiao, C. Zhou, Q. Pu, X. Deng, L. Lan, X. Song, M. Wu, Signal Transduct. Target. Ther. 7(1), 199 (2022). https://doi.org/10.1038/s41392-022-01056-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The author(s) are thankful to the mentioned departments for accomplishment of the work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hamid Aziz or Aamer Saeed.

Ethics declarations

Conflict of interest

The author(s) declare no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2899 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aziz, H., Zafar, F., Jabeen, E. et al. Synthesis, in silico guided DNA-interaction analysis, in vitro anti-oxidant evaluation, and antibacterial assay of 4-amino-5-(2-benzylidenehydrazinyl)-2H-1,2,4-triazole-3(4H)-thiones. J IRAN CHEM SOC 21, 863–876 (2024). https://doi.org/10.1007/s13738-024-02976-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-024-02976-1

Keywords

Navigation