Skip to main content
Log in

Synthesis, Molecular Modeling, and Antioxidant Activity of New Thiadiazole-Triazole Analogs Hybridized with Thiophene

  • Research Article-chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The synthetic protocol of our targeted thiadiazole-triazole analogs hybridized with thiophene is based on heterocyclization key compound 5-(2-chloroacetamido)-2-phenyl-N-(1,3,4-thiadiazol-2-yl)-2H-1,2,3-triazole-4-carboxamide (1) in the presence of different thiocarbamoyl reagents 2, 5, and/or 8. The HOMO–LUMO energies and Fukui’s indices were established by applying the DFT/B3LYP molecular modeling methodology. The examined compounds exhibited a low and close HOMO–LUMO energy gap of 1.64–1.99 eV, where the derivatives 7 and 4 presented the lowest and highest values, respectively. The antioxidant properties of the prepared thiadiazole–triazole–thiophene hybrids were investigated using the DPPH radical scavenging technique, where hybrids 4 and 6 showed the strongest inhibition, whereas analog 10 showed only moderate inhibition. Over the course of two common reference drugs, vitamin C and BHT, all of the radical scavenging for thiadiazole-triazole hybrids was examined. Additionally, the generated thiadiazole–triazole–thiophene hybrids' molecular docking was evaluated through the PDB code 3MNG. Hybrid 6 had the highest recorded binding score when compared to the other hybrids. The docking repercussions were appropriate and addressed with the antioxidant assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Scheme 3
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Belen’kii, L.I.; Gazieva, G.A.; Evdokimenkova, M.; Soboleva, N.O.: The literature of heterocyclic chemistry. Adv. Heterocycl. Chem. 132, 385–468 (2020). https://doi.org/10.1016/bs.aihch.2020.01.002

    Article  Google Scholar 

  2. Acharya, P.T.; Bhavsar, Z.A.; Jethava, D.J.; Patel, D.B.; Patel, H.D.: A review on development of bio-active thiosemicarbazide derivatives: recent advances. J. Mol. Struct. 1226, 129268 (2021). https://doi.org/10.1016/j.molstruc.2020.129268

    Article  Google Scholar 

  3. Martins, P.; Jesus, J.; Santos, S.; Raposo, L.R.; Roma-Rodrigues, C.; Baptista, B.V.; Fernandes, A.R.: Heterocyclic anticancer compounds: recent advances and the paradigm shift towards the use of nanomedicine’s tool box. Molecules 20(9), 16852–16891 (2015). https://doi.org/10.3390/molecules200916852

    Article  Google Scholar 

  4. Huo, H.; Li, G.; Shi, B.; Li, J.: Recent advances on synthesis and biological activities of C-17 aza-heterocycle derived steroids. Bioorg. Med. Chem. 69, 116882 (2022). https://doi.org/10.1016/j.bmc.2022.116882

    Article  Google Scholar 

  5. Heravi, M.M.; Sadjadi, S.: Recent advances in the application of the Sonogashira method in the synthesis of heterocyclic compounds. Tetrahedron 65(37), 7761–7775 (2009)

    Article  Google Scholar 

  6. Bashir, M.; Bano, A.; Ijaz, A.S.; Chaudhary, B.A.: Recent developments and biological activities of N-substituted carbazole derivatives: a review. Molecules 20(8), 13496–13517 (2015). https://doi.org/10.1016/j.tet.2009.06.028

    Article  Google Scholar 

  7. Zayda, M. G.; Abdel-Rahman, A. A. H.; El-Essawy, F. A.: Synthesis and antibacterial activities of different five-membered heterocyclic rings incorporated with pyridothienopyrimidine. 5 (11), 6163–6168 (2020). https://doi.org/10.1021/acsomega.0c00188.

  8. Plescia, F.; Maggio, B.; Daidone, G.; Raffa, D.: 4-(3H)-quinazolinones N-3 substituted with a five membered heterocycle: a promising scaffold towards bioactive molecules. Eur. J. Med. Chem. 213, 113070 (2021). https://doi.org/10.1016/j.ejmech.2020.113070

    Article  Google Scholar 

  9. Maisuradze, M.; Phalavadishvili, G.; Gakhokidze, Matnadze, M.; Tskhvitaia, S.; Kalandia, E.: Novel diazole/triazole and dibenzothiophene dioxide containing pentacyclic systems with promising biological activities. Int. J. Org. Chem. 7 (01), 34–41 (2017). https://doi.org/10.4236/ijoc.2017.71004.

  10. Tumosienė, I.; Jonuškienė, I.; Kantminienė, Mickevičius, S. V.; Beresnevičius, Z. J.: Synthesis and biological activity of 1,3,4-oxa (thia) diazole,1,2,4-triazole-5-(thio) one and S-substituted derivatives of 3-((2-carboxyethyl) phenylamino) propanoic acid. Res. Chem. Inter. 42 (5), 4459–4477 (2016). https://doi.org/10.1007/s11164-015-2290-0.

  11. Burbuliene, M.M.; Sakociute, V.; Vainilavicius, P.: Synthesis and characterization of new pyrimidine-based 1,3,4-oxa (thia) diazole, 1,2,4-triazole and 4-thiazolidinones. ARKIVOC 2, 281–289 (2009). https://doi.org/10.3998/ark.5550190.0010.c24

    Article  Google Scholar 

  12. Sathish-Kumar, S.; Kavitha, H.P.: Synthesis and biological applications of triazole derivatives–a review. Mini Rev. Org. Chem. 10(1), 40–65 (2013). https://doi.org/10.2174/1570193X11310010004

    Article  Google Scholar 

  13. Soltan, O. M.; Shoman, M. E.; Abdel-Aziz, S. A.; M., Narumi, A.; Konno, H.; Abdel-Aziz, M.: Molecular hybrids: a five-year survey on structures of multiple targeted hybrids of protein kinase inhibitors for cancer therapy. Eur. J. Med. Chem. 225, 113768 (2021). https://doi.org/10.1016/j.ejmech.2021.113768.

  14. Da Silva Júnior, E.N.; Jardim, G.A.; Jacob, C.; Dhawa, U.; Ackermann, L.: Synthesis of quinones with highlighted biological applications: a critical update on the strategies towards bioactive compounds with emphasis on lapachones. Eur. J. Med. Chem. 179, 863–915 (2019). https://doi.org/10.1016/j.ejmech.2019.06.056

    Article  Google Scholar 

  15. Aggarwal, R.; Sumran, G.: An insight on medicinal attributes of 1, 2, 4-triazoles. Eur. J. Med. Chem. 205, 112652 (2020). https://doi.org/10.1016/j.ejmech.2020.112652

    Article  Google Scholar 

  16. Malani, A. H.; Makwana, A. H.; Makwana, H. R.: A brief review article: various synthesis and therapeutic importance of 1, 2, 4-triazole and its derivatives. Moroccan J. Chem. 5 (1), 41–58 (2017). https://doi.org/10.48317/imist.prsm/morjchem-v5i1.5959.

  17. Veloso, R.V.; Shamim, A.; Lamarrey, Y.; Stefani, H.A.; Sciani, J.M.: Antioxidant and anti-sickling activity of glucal-based triazoles compounds–an in vitro and in silico study. Bioorg. Chem. 109, 104709 (2021). https://doi.org/10.1016/j.bioorg.2021.104709

    Article  Google Scholar 

  18. Alsaedi, A.M.; Almehmadi, S.J.; Farghaly, T.A.; Harras, M.F.; Khalil, K.D.: VEGFR2 and hepatocellular carcinoma inhibitory activities of trisubstituted triazole derivatives. J. Mol. Struct. 1250, 131832 (2022). https://doi.org/10.1016/j.molstruc.2021.131832

    Article  Google Scholar 

  19. Al-Hussain, S.A.; Farghaly, T.A.; Zaki, M.E.; Abdulwahab, H.G.; Al-Qurashi, N.T.; Muhammad, Z.A.: Discovery of novel indolyl-1,2,4-triazole hybrids as potent vascular endothelial growth factor receptor-2 (VEGFR-2) inhibitors with potential anti-renal cancer activity. Bioorg. Chem. 105, 104330 (2020). https://doi.org/10.1016/j.bioorg.2020.104330

    Article  Google Scholar 

  20. Kabi, A.K.; Gujjarappa, R.; Garg, A.; Roy, A.; Sahoo, A.; Gupta, S.; Malakar, C.C.: Highlights on biological activities of 1,3,4-thiadiazole and indazole derivatives. Tailored Funct. Mater. 15, 99–109 (2022). https://doi.org/10.1007/978-981-19-2572-6_7

    Article  Google Scholar 

  21. Castro, A.; Castaño, T.; Encinas, A.; Porcal, W.; Gil, C.: Advances in the synthesis and recent therapeutic applications of 1,2,4-thiadiazole heterocycles. Bioorg. Med. Chem. 14(5), 1644–1652 (2006). https://doi.org/10.1016/j.bmc.2005.10.012

    Article  Google Scholar 

  22. Shukla, P. K.; Verma, A.; Mishra, P., Significance of nitrogen heterocyclic nuclei in the search of pharmacological active compounds. New Perspective in Agricultural and Human Health; Ed., 100–126 (2017).

  23. Bahmani, Y.; Bahrami, T.; Alabadi, A.: Synthesis, cytotoxicity assessment and molecular docking of N-(5-(substituted-benzylthio)-1,3,4-thiadiazole-2-yl)-2-p-fluorophenylacetamide derivatives as tyrosine kinase inhibitors. Indian J. Pharm. Sci. 81(1), 63–70 (2019). https://doi.org/10.4172/pharmaceutical-sciences.1000480

    Article  Google Scholar 

  24. El-Emam, A.A.; Kumar, E.S.; Janani, K.; Al-Wahaibi, L.H.; Blacque, O.; El-Awady, M.I.; Al-Shaalan, N.H.; Percino, M.J.; Thamotharan, S.: Quantitative assessment of the nature of noncovalent interactions in N-substituted-5-(adamantan-1-yl)-1,3,4-thiadiazole-2-amines: insights from crystallographic and QTAIM analysis. RSC adv. 10(17), 9840–9853 (2020). https://doi.org/10.1039/D0RA00733A

    Article  Google Scholar 

  25. Kerru, N.; Gummidi, L.; Bhaskaruni, S.V.; Maddila, S.N.; Singh, P.; Jonnalagadda, S.B.: A comparison between observed and DFT calculations on structure of 5-(4-chlorophenyl)-2-amino-1,3,4-thiadiazole. Sci. Rep. 9(1), 1–17 (2019). https://doi.org/10.1038/s41598-019-55793-5

    Article  Google Scholar 

  26. Sidat, P. S.; Kasim Jaber, T. M.; Vekariya, S. R.; Mogal, A. M.; Patel, A. M.; Noolvi, M.: Anticancer biological profile of some heterocylic moieties-thiadiazole, benzimidazole, quinazoline, and pyrimidine. Pharmacophore, 13(4), 59–71 (2022). https://doi.org/10.51847/rT6VE6gESu.

  27. Joseph, L.; George, M.; Mathews, P.: A review on various biological activities of 1, 3, 4-thiadiazole derivatives. J. Pharm. Chem. Biol. Sci. 3(1), 329–345 (2015)

    Google Scholar 

  28. Taghizadeh, M.; Javidan, A.; Salmani, A.: Synthesis and docking study on thiadiazolo [3,2-a][1,3]diazepin-8(5H)-one derivatives as selective GABAA agonists. J. Sci. Islamic Rep. Iran 28(1), 13–19 (2017)

    Google Scholar 

  29. Barbosa, F.; Pinto, E.; Kijjo, A.; Pinto, M.; Sousa, E.: Targeting antimicrobial drug resistance with marine natural products. Int. J. Antimicrob. Agents. 56(1), 106005 (2020). https://doi.org/10.1016/j.ijantimicag.2020.106005

    Article  Google Scholar 

  30. Janowska, S.; Paneth, A.; Wujec, M.: Cytotoxic properties of 1,3,4-thiadiazole derivatives—a review. Molecules 25(18), 4309 (2020). https://doi.org/10.3390/molecules25184309

    Article  Google Scholar 

  31. Hoser, A. A.; Kamiński, D. M.; Skrzypek, A.; Matwijczuk, A.; Niewiadomy, A.; Gagoś, M.; Woźniak, K.: Interplay of inter-and intramolecular interactions in crystal structures of 1, 3, 4-thiadiazole resorcinol derivatives. Cryst. Growth Des. 18 (7), 3851–3862 (2018). https://doi.org/10.1021/acs.cgd.8b00077.

  32. Kamboj, S.; Singh, R.: Chromanone-a prerogative therapeutic scaffold: an overview. Arab. J. Sci. Eng. 47, 75–111 (2022). https://doi.org/10.1007/s13369-021-05858-3

    Article  Google Scholar 

  33. Alqahtani, A.M.: Synthesis and biological screening of new thiadiazolopyrimidine-based polycyclic compounds. Sci. Rep. 11(1), 1–15 (2021). https://doi.org/10.1038/s41598-021-95241-x

    Article  MathSciNet  Google Scholar 

  34. Mabkhot, Y.N.; Kaal, N.A.; Alterary, S.; Al-Showiman, S.S.; Farghaly, T.A.; Mubarak, M.S.: Antimicrobial activity of thiophene derivatives derived from ethyl (E)-5-(3-(dimethylamino) acryloyl)-4-methyl-2-(phenylamino) thiophene-3-carboxylate. Chem. Cent. J. 11(1), 1–11 (2017). https://doi.org/10.1186/s13065-017-0307-z

    Article  Google Scholar 

  35. Althagafi, I.: Molecular modeling and antioxidant evaluation of new di-2-thienyl ketones festooned with thiazole or pyridine moiety. J. Mol. Struct. 1182, 22–23 (2019). https://doi.org/10.1016/j.molstruc.2021.131287

    Article  Google Scholar 

  36. El-Kousy, S.; Mohareb, R.; Sherif, S.: Heterocyclic synthesis with isothiocyanates: an expeditious synthetic route to polyfunctionally substituted thiophene, pyrazole, oxazole,2,3-dihydrothiazole,2-(pyrazol-4-ylidene) thiazole and 5-(thiazol-2-ylidene) pyrimidine derivatives. J. Chem. Res. Synopses (Print). (8), 312–313 (1993). http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4869778.

  37. El-Shazly, R.: Spectral, magnetic, thermal and electro-chemical studies on ethyl- alpha-(N-phenylthiocarbamyl) acetoacetate complexes. Chem. Pharm. Bull. 47(11), 1614–1617 (1999). https://doi.org/10.1248/cpb.47.1614

    Article  Google Scholar 

  38. El-Shafei, A.; El-Sayed, A.; El-Saghier, A.: A one-pot synthesis of thiopyrane derivatives from ketene S, S-acetals and α, β-unsaturated nitriles under Ptc conditions. Phosphorus Sulfur. Silicon Relat. Elem. 90(4), 213–218 (1994). https://doi.org/10.1080/10426509408016404

    Article  Google Scholar 

  39. Khalafy, J.; Akbari Dilmaghani, K.; Soltani, L.; Poursattar-Marjani, A.: The synthesis of new 5-aminoisoxazoles by reaction of thiocarbamoylcyanoacetates with hydroxylamine. Chem. Heterocycl. Compd. 44(6), 729–734 (2008). https://doi.org/10.1007/s10593-008-0101-x

    Article  Google Scholar 

  40. Pal, T.: Direct determination of mercury in complex-compounds. Indian Chem. Soc. 62, 561–562 (1985). https://doi.org/10.1007/978-3-642-30942-7

    Article  Google Scholar 

  41. Frisch, M.; Trucks, G.; Schlegel, H.; Scuseria, G.; Robb, M.; Cheeseman, J.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.: Gaussian 09, Revision A. 1. Wallingford, CT, USA: Gaussian. (2009).

  42. Becke, A.D.: Perspective on “density-functional thermochemistry III the role of exact exchang e.” Theor. Chem. Acc. 103, 361–363 (2000)

    Article  Google Scholar 

  43. Lee, C.; Yang, W.; Parr, R.G.: Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37(2), 785–789 (1988). https://doi.org/10.1103/PhysRevB.37.785

    Article  Google Scholar 

  44. Perdew, J.P.; Wang, Y.: Pair-distribution function and its coupling-constant average for the spin-polarized electron gas. Phys. Rev. B 46(20), 12947–12954 (1992)

    Article  Google Scholar 

  45. Biovia, D. S.: Materials Studio, (2017) https://doi.org/10.1103/PhysRevB.46.12947.

  46. Delley, B.: Ground-state enthalpies: evaluation of electronic structure approaches with emphasis on the density functional method. J. Phys. Chem. A 110(50), 13632–13639 (2006). https://doi.org/10.1021/jp0653611

    Article  Google Scholar 

  47. Althagafi, I.I.; Gaffer, H.E.: Synthesis, molecular modeling and antioxidant activity of new phenolic bis-azobenzene derivatives. J. Mol. Struct. 1182, 22–30 (2019). https://doi.org/10.1016/j.molstruc.2019.01.030

    Article  Google Scholar 

  48. Abdel-Latif, E.; Amer, F.A.: Synthesis of some 4-arylazo-3-hydroxythiophene disperse dyes for dyeing polyester fabrics. Monatsh. Chem. 139(5), 561–567 (2008). https://doi.org/10.1007/s00706-007-0722-2

    Article  Google Scholar 

  49. Abu-Melha, S.: Molecular modeling and antioxidant activity of newly synthesized 3-hydroxy-2-substituted-thiophene derivatives. J. Mol. Struct. 1250, 131821 (2022). https://doi.org/10.1016/j.molstruc.2021.131821

    Article  Google Scholar 

  50. Abdel-Latif, E.; Keshk, E.M.; Khalil, A.-G.M.; Saeed, A.; Metwally, H.M.: Utilization of thioacetanilides in the synthesis of new 4-(4-acetamidophenylazo)thiophene scaffolds and evaluating their anti-oxidant activity. J. Iran. Chem. Soc. 16(3), 629–637 (2019). https://doi.org/10.1007/s13738-018-1540-7

    Article  Google Scholar 

  51. Orif, M.I.; Abdel-Rhman, M.H.: Synthesis, spectral and structural studies on some new isonicotinic thiosemicarbazide complexes and its biological activity. Polyhedron 98, 162–179 (2015). https://doi.org/10.1016/j.poly.2015.06.021

    Article  Google Scholar 

  52. Suwiński, J.; Świerczek, K.; Glowiak, T.: Nucleophilic amination and ring transformation in 2-methyl-4-nitro-1-phenylimidazole. Tetrahedron Lett. 33(51), 7941–7944 (1992). https://doi.org/10.1016/S0040-4039(00)74784-8

    Article  Google Scholar 

  53. Zhang, L. Y.; Tian, L. J.; Zhang, C. F.: 2-Phenyl-2H-1,2,3-triazole-4-carboxylic acid. Acta Crystallogr. Sect. E Struct. Rep. Online 63 (11), o4415-o4415 (2007). https://doi.org/10.1107/S1600536807051823.

  54. Burnett, M.E.; Johnston, H.M.; Green, K.N.: Structural characterization of the aquaporin inhibitor 2-nicotinamido-1,3,4-thiadiazole. Acta Crystallogr. Sect. C Struct. Chem. 71(12), 1074–1079 (2015). https://doi.org/10.1107/S2053229615021130

    Article  Google Scholar 

  55. Garcia, R.C.; Patel, K.; Day, C.S.; Noftle, R.E.: Synthesis and characterization of complexes formed by transition metal ions with thiophene imides as potential precursors to metal ion uptake and release agents. Inorg. Chim. Acta 453, 268–276 (2016). https://doi.org/10.1016/j.ica.2016.08.016

    Article  Google Scholar 

  56. Sajan, D.; Joseph, L.; Vijayan, N.; Karabacak, M.: Natural bond orbital analysis, electronic structure, non-linear properties and vibrational spectral analysis of L-histidinium bromide monohydrate: a density functional theory. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 81 (1), 85–98 (2011). https://doi.org/10.1016/j.saa.2011.05.052.

  57. Bulat, F.A.; Chamorro, E.; Fuentealba, P.; Toro-Labbe, A.: Condensation of frontier molecular orbital Fukui functions. J. Phys. Chem. A 108(2), 342–349 (2004). https://doi.org/10.1021/jp036416r

    Article  Google Scholar 

  58. Serdaroğlu, G.; Uludag, N.; Colak, N.; Rajkumar, P.: Nitrobenzamido substitution on thiophene-3-carboxylate: electrochemical investigation, antioxidant activity, molecular docking. DFT calculations. J. Mol. Struct. 1271, 134030 (2023). https://doi.org/10.1016/j.molstruc.2022.134030

    Article  Google Scholar 

  59. Koopmans, T.: über Die Zuordnung Von Wellenfunktionen Und Eigenwerten Zu Den Einzelnen Elektronen Eines Atoms. Physica. 1, 104–113 (1934). https://doi.org/10.1016/S0031-8914(34)90011-2

    Article  MATH  Google Scholar 

  60. Perdew, J.P.; Parr, R.G.; Levy, M.; Balduz, J.L.: Density-functional theory for fractional particle number: derivative discontinuities of the energy. Phys. Rev. Lett. 49(23), 1691–1694 (1982). https://doi.org/10.1103/physrevlett.49.1691

    Article  Google Scholar 

  61. Janak, J.F.: Proof that in density-functional theory. Phys. Rev. B. 18(12), 7165–7168 (1978). https://doi.org/10.1103/PhysRevB.18.7165

    Article  Google Scholar 

  62. Perdew, J.P.; Levy, M.: Density-functional theory of the energy gap. Phys. Rev. Lett. 51(20), 1884–1887 (1983). https://doi.org/10.1103/PhysRevLett.51.1888

    Article  Google Scholar 

  63. Parr, R.G.; Pearson, R.G.: Absolute hardness: companion parameter to absolute electronegativity. J. Am. Chem. Soc. 105, 7512–7516 (1983). https://doi.org/10.1021/ja00364a00564

    Article  Google Scholar 

  64. Pearson, R.G.: Absolute electronegativity and hardness correlated with molecular orbital theory. Proc. Natl. Acad. Sci. USA 83, 8440–8441 (1986). https://doi.org/10.1073/pnas.83.22.8440

    Article  Google Scholar 

  65. Parr, R.G.; Szentpaly, L.V.; Liu, S.: Electrophilicity index. J. Am. Chem. Soc. 121, 1922–1924 (1999). https://doi.org/10.1021/ja983494x

    Article  Google Scholar 

  66. Gazquez, J.L.; Cedillo, A.; Vela, A.: Electrodonating and electroaccepting powers. J. Phys. Chem. A 111(10), 1966–1970 (2007). https://doi.org/10.1021/jp065459f

    Article  Google Scholar 

  67. Gomez, B.; Likhanova, N. V.; Domínguez-Aguilar, M. A.; Martínez-Palou, R.; Vela, A.; Gazquez, J. L.: Quantum chemical study of the inhibitive properties of 2-Pyridyl-Azoles. J. Phys. Chem., B 110 (18), 8928–8934(2006). https://doi.org/10.1021/jp057143y

  68. Fukui, K.: Role of frontier orbitals in chemical reactions. Science 218(4574), 747–754 (1982). https://doi.org/10.1126/science.218.4574.747

    Article  Google Scholar 

  69. Mulliken, R.S.: Electronic population analysis on LCAO–MO molecular wave functions. II overlap populations, bond orders, and covalent bond energies. J. Chem. Phys. 23, 1841 (1955). https://doi.org/10.1063/1.1740589

  70. Ghosh, A.; Sarkar, A.; Mitra, P.; Banerji, A.; Banerji, J.; Mandal, S.; Das, M.: Crystal structure and DFT calculations of 3,4-seco-lup-20(29)-en-3-oic acid isolated from Wrightia tinctoria: stacking of supramolecular dimers in the crystal lattice. J. Mol. Struct. 980(1–3), 7–12 (2010). https://doi.org/10.1016/j.molstruc.2010.06.011

    Article  Google Scholar 

  71. Bhagyasree, J. B.; Varghese, H. T.; Panicker, C. Y.; Samuel, J.; Van Alsenoy, C.; Bolelli, K.; Yildiz, I.; Aki, E.: Vibrational spectroscopic (FT-IR, FT-Raman, (1)H NMR and UV) investigations and computational study of 5-nitro-2-(4-nitrobenzyl) benzoxazole. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 102, 99–113 (2013). https://doi.org/10.1016/j.saa.2012.09.032.

  72. Olasunkanmi, L.O.; Obot, I.B.; Ebenso, E.E.: Adsorption and corrosion inhibition properties of N-{n-[1-R-5-(quinoxalin-6-yl)-4,5-dihydropyrazol-3-yl]phenyl} methanesulfonamides on mild steel in 1 M HCl: experimental and theoretical studies. RSC Adv. 6(90), 86782–86797 (2016). https://doi.org/10.1039/C6RA11373G

    Article  Google Scholar 

  73. El Adnani, Z.; Mcharfi, M.; Sfaira, M.; Benzakour, M.; Benjelloun, A.; Touhami, M.E.: DFT theoretical study of 7-R-3methylquinoxalin-2 (1H)-thiones (RH; CH3; Cl) as corrosion inhibitors in hydrochloric acid. Corros. Sci. 68, 223–230 (2013). https://doi.org/10.1016/j.corsci.2012.11.020

    Article  Google Scholar 

  74. Mi, H.; Xiao, G.; Chen, X.: Theoretical evaluation of corrosion inhibition performance of three antipyrine compounds. Comput. Theor. Chem. 1072, 7–14 (2015). https://doi.org/10.1016/j.comptc.2015.08.023

    Article  Google Scholar 

  75. Messali, M.; Larouj, M.; Lgaz, H.; Rezki, N.; Al-Blewi, F.; Aouad, M.; Chaouiki, A.; Salghi, R.; Chung, I.M.: A new schiff base derivative as an effective corrosion inhibitor for mild steel in acidic media: experimental and computer simulations studies. J. Mol. Struct. 1168, 39–48 (2018). https://doi.org/10.1016/j.molstruc.2018.05.018

    Article  Google Scholar 

  76. Roy, R.; Krishnamurti, S.; Geerlings, P.; Pal, S.: Local softness and hardness based reactivity descriptors for predicting intra-and intermolecular reactivity sequences: carbonyl compounds. J. Phys. Chem. A 102(21), 3746–3755 (1998). https://doi.org/10.1021/jp973450v

    Article  Google Scholar 

  77. Roy, R.; de Proft, F.D.; Geerlings, P.: Site of protonation in aniline and substituted anilines in the gas phase: a study via the local hard and soft acids and bases concept. J. Phys. Chem. A 102(35), 7035–7040 (1998). https://doi.org/10.1021/jp9815661

    Article  Google Scholar 

  78. Roy, R.K.; Pal, S.; Hirao, K.: On non-negativity of Fukui function indices. J. Chem. Phys. 110(17), 8236–8245 (1999). https://doi.org/10.1063/1.478792

    Article  Google Scholar 

  79. Molyneux, P.: The use of the stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin J. Sci. Techno. 26(2), 211–219 (2004)

    Google Scholar 

  80. Güdr, A., Influence of total anthocyanins from bitter melon (Momordica charantia Linn) as antidiabetic and radical scavenging agents. Iran. J. Pharm. Res. 15 (1), 301 (2016). PMCID: PMC4986123.

  81. Li, X.; Chen, B.; Xie, H.; He, Y.; Zhong, D.; Chen, D.: Antioxidant structure–activity relationship analysis of five dihydrochalcones. Molecules 23(5), 1162 (2018). https://doi.org/10.3390/molecules23051162

    Article  Google Scholar 

  82. Abu-Melha, S.: Molecular modeling and docking of new 2-acetamidothiazole-based compounds as antioxidant agents. J. Saudi Chem. Soc. 26(2), 101431 (2022). https://doi.org/10.1016/j.jscs.2022.101431

    Article  Google Scholar 

  83. Nural, Y.; Ozdemir, S.; Yalcin, M.S.; Demir, B.; Atabey, H.; Seferoglu, Z.; Ece, A.: New bis-and tetrakis-1,2,3-triazole derivatives: Synthesis, DNA cleavage, molecular docking, antimicrobial, antioxidant activity and acid dissociation constants. Bioorg. Med. Chem. Lett. 55, 128453 (2022). https://doi.org/10.1016/j.bmcl.2021.128453

    Article  Google Scholar 

  84. Mabkhot, Y.N.; Aldawsari, F.D.; Al-Showiman, S.S.; Barakat, A.; Soliman, S.M.; Choudhary, M.I.; Yousuf, S.; Ben Hadda, T.; Mubarak, M.S.: Synthesis, molecular structure optimization, and cytotoxicity assay of a novel 2-acetyl-3-amino-5-[(2-oxopropyl) sulfanyl]-4-cyanothiophene. Molecules 21(2), 214 (2016). https://doi.org/10.3390/molecules21020214

    Article  Google Scholar 

  85. Hamdi, N.; Slimani, I.; Mansour, L.; Alresheedi, F.; Gürbüz, N.; Özdemir, I.: N-Heterocyclic carbene-palladium-PEPPSI complexes and their catalytic activity in the direct C-H bond activation of heteroarene derivatives with aryl bromides: synthesis, and antimicrobial and antioxidant activities. New J. Chem. 45(45), 21248–21262 (2021). https://doi.org/10.1039/D1NJ04606C

    Article  Google Scholar 

  86. Molvi, K.I.; Mansuri, M.; Sudarsanam, V.; Patel, M.M.; Andrabi, S.M.A.; Haque, N.: Synthesis, anti-inflammatory, analgesic and antioxidant activities of some tetrasubstituted thiophenes. J. Enzyme Inhib. Med. Chem. 23(6), 829–838 (2008). https://doi.org/10.1080/14756360701626082

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code: (22UQU4350527DSR12).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nashwa M. El-Metwaly.

Ethics declarations

Conflict of interest

Author announces that there is no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2450 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bayazeed, A., Althumayri, K., Abu-Melha, S. et al. Synthesis, Molecular Modeling, and Antioxidant Activity of New Thiadiazole-Triazole Analogs Hybridized with Thiophene. Arab J Sci Eng 48, 7553–7570 (2023). https://doi.org/10.1007/s13369-022-07572-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07572-0

Keywords

Navigation