Skip to main content
Log in

Development of electrochemical and stability-indicating chromatographic methods for the determination of cefprozil

  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

This study aims to develop an electrochemical method for determining cefprozil (CFP) and a stability-indicating chromatographic analysis method for determining CFP’s isomers. CFP was determined for the first time via voltammetric methods in this study. The electrochemical behavior of CFP was examined over a pH ranging between 0.3 and 10.0 using cyclic voltammetry and differential pulse voltammetry (DPV). CFP oxidized irreversibly and by diffusion-controlled at a glassy carbon electrode. Quantification studies with DPV were carried out. The repeatability, reproducibility, sensitivity, precision, and accuracy of the method were statistically evaluated. To determine CFP's diastereoisomers, a high-performance liquid chromatography (HPLC) method was devised and validated using paracetamol as the internal standard. The moving phase, buffer solutions at various concentrations, pH, temperature, and flow rate impacts were all tuned in the experiments. The optimum separation via chromatography was sustained through the ACE 5 C8 (150 × 4.6 mm × 5 µm) column and acetonitrile: buffer solution (5 mM, ammonium acetate), 90:10 (v/v) mobile phase composition. The CFP diastereomers were separated at a flow rate of 1 mL min−1, 45 °C, and a wavelength of detection at 280 nm. The proposed method was validated in line with the International Conference on Harmonization guidelines, and HPLC degradation studies (oxidation, UV light, acid, base and temperature) were also performed. The proposed voltammetric and stability-indicating chromatographic methods have been successfully applied in pharmaceutical dosage forms. Thus, it has been shown that the analysis results were not affected by the excipients and their applicability to drug samples. Both methods were validated, and their applicability for analysis from synthetic biological samples will be demonstrated. The developed methods were fast, selective, sensitive, reliable, and environmentally friendly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S. Bhargava, R. Lodha, S.K. Kabra, Indian. J. Pediatr. 70, 395 (2003)

    Google Scholar 

  2. A. Marzo, L. Dal Bo, J. Chromatogr. A 812, 17 (1998)

    Article  CAS  PubMed  Google Scholar 

  3. L.R. Wiseman, P. Benfield, Drug Eval. 45, 295 (1993)

    Article  CAS  Google Scholar 

  4. L. Xu, J. Su, H. Muhetaer, C. Zhang, C. Huang, Y. Tang, X. Fu, Z. Liang, Clin. Pharmacol. Drug Dev. (2023). https://doi.org/10.1002/cpdd.1304

    Article  PubMed  Google Scholar 

  5. H. Shikshaky, M.S. Rashed, A.A. Mohamed, Egypt. J. Chem. 63, 3129 (2020)

    Google Scholar 

  6. K. Tomatsu, S. Ando, S. Masuyoshi, S. Kondo, M. Hirano, T. Miyaki, H. Kawaguchi, J. Antibiot. (Tokyo) 40, 1175 (1987)

    Article  CAS  PubMed  Google Scholar 

  7. N.X. Chin, H.C. Neu, Antimicrob. Agents Chemother. 31, 480 (1987)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. R.H. Barbhaiya, U.A. Shukla, C.R. Gleason, W.C. Shyu, R.B. Wilber, R.R. Martin, K.A. Pittman, Antimicrob. Agents Chemother. 34, 1198 (1990)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. E.A. Gadkariem, M.M. Mutasim, K.E.E. Ibrahim, H.A. El-Obeid, Int. J. Biomed. Sci. 5, 267 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. K. Jadhav, D. Dhamecha, G. Asnani, V. Bhalekar, S. Lahoti, Chronicles Young Sci. 4, 158 (2013)

    Article  Google Scholar 

  11. V. Jagapathi Raju, J.V.L.N. Seshagiri Rao, J. Chem. 5, 427 (2008)

    Google Scholar 

  12. T.H. Park, J.K. Kim, J.P. Jee, J.S. Park, C.K. Kim, J. Pharm. Biomed. Anal. 36, 243 (2004)

    Article  CAS  PubMed  Google Scholar 

  13. N.O. Can, J. Sep. Sci. 34, 2223 (2011)

    Article  CAS  PubMed  Google Scholar 

  14. M. Liu, J.Y. Ma, Y. Zhang, X. Wang, H. Zhao, A. Du, M. Yang, L. Meng, M. Deng, H. Liu, Biomed. Chromatogr. 30, 288 (2016)

    Article  CAS  PubMed  Google Scholar 

  15. G. He, L. Mai, X. Wang, Int. J. Anal. Chem. 2018, (2018)

  16. N.A. Alarfaj, S.A. Abd El-Razeq, J. Pharm. Biomed. Anal. 41, 1423 (2006)

    Article  CAS  PubMed  Google Scholar 

  17. K. Nagy, K. Vékey, Med. Appl. Mass Spectrom. 61 (2007)

  18. B. Bozal, B. Doğan-Topal, B. Uslu, S.A. Özkan, H.Y. Aboul-Enein, Anal. Lett. 42, 2322 (2009)

    Article  CAS  Google Scholar 

  19. Ç. Kanbeş Dindar, B. Bozal-Palabiyik, B. Uslu, Electroanalysis 34, 1174 (2022)

    Article  Google Scholar 

  20. S.E. Elugoke, O.E. Fayemi, A.S. Adekunle, P.S. Ganesh, S.Y. Kim, E.E. Ebenso, J. Electroanal. Chem. 929, 117120 (2023)

    Article  CAS  Google Scholar 

  21. Validation of Analytical Procedures: ICH Guidelines Q2(R2) (2022)

  22. B. Tunç, K. Amudi, P. Talay Pinar, J. Res. Pharm. 26, 1484 (2022)

    Google Scholar 

  23. A.M. AboulMagd, N.S. Abdelwahab, M.M. Abdelrahman, H.M. Abdel-Rahman, N.F. Farid, J. Pharm. Biomed. Anal. 206, 114358 (2021)

    Article  CAS  PubMed  Google Scholar 

  24. D. Boczar, K. Bus, K. Michalska, Int. J. Mol. Sci. 23, 15252 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. S.W. Baertschi, K.M. Alsante, D. Santafianos, Pharmaceutical stress testing, in Predicting drug degradation, 2nd edn., ed. by S.W. Baertschi, K.M. Alsante, R.A. Reed (Informa Healthcare, London, 2011), pp.49–141

    Google Scholar 

  26. V.T. Gawande, K.G. Bothara, A.M. Marathe, Chromatographia 80, 1545 (2017)

    Article  CAS  Google Scholar 

  27. A. von Ahn, A. Dallegrave, J.H.Z. dos Santos, Chromatographia 85, 263 (2022)

    Article  Google Scholar 

  28. A. Karlesa, G.A.D. De Vera, M.C. Dodd, J. Park, M.P.B. Espino, Y. Lee, Environ. Sci. Technol. 48, 10380 (2014)

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was produced from Ayşenur Ortak's (Ankara University Health Sciences Institute) master's thesis. Cem Erkmen acknowledges TUBİTAK for funding in the form of the Research Fellowship [2218-TUBİTAK project number: 122C252] through the 2218 - National Postdoctoral Research Fellowship Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bengi Uslu.

Ethics declarations

Conflict of interest

The authors also declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 1707 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ortak, A., Erkmen, C., Bozal-Palabiyik, B. et al. Development of electrochemical and stability-indicating chromatographic methods for the determination of cefprozil. J IRAN CHEM SOC 21, 263–273 (2024). https://doi.org/10.1007/s13738-023-02923-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-023-02923-6

Keywords

Navigation