Skip to main content
Log in

Enhanced voltammetric detection of estriol hormone using poly(l-arginine)-modified carbon nanotube paste as a responsive electrochemical sensor

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

The current research focused on designing a simple, inexpensive, and green electrochemical sensor for the sensitive estriol hormone (ETL) detection. To achieve this, a bare carbon nanotube paste electrode (BCNTPE) and electrochemically polymerized L-arginine (ARN)-modified carbon nanotube paste electrode (MCNTPE) were developed. The prepared electrochemical sensor was characterized using various techniques, such as field-emission scanning electron microscopy (FE-SEM), electrochemical impedance spectroscopy (EIS), differential pulse voltammetry (DPV), and cyclic voltammetry (CV) methods. The investigation of the electrochemical oxidation nature of ETL in a supporting electrolyte of phosphate buffer solution (PBS) with pH 6.5 was carried out using a modified electrode (PARNMCNTPE) having superior electrocatalytic activity and more electrochemical active spots than the BCNTPE. Significant parameters like the impact of the pH of PBS, potential scan rate, and ETL concentration on the electrochemical behavior of ETL at the surface of the PARNMCNTPE were investigated. The potential scan rate and pH of PBS variation influence that the ETL oxidation at the PARNMCNTPE surface proceeded via pH-dependent and adsorption-controlled reaction pathways. The PARNMCNTPE senses ETL in the range from 2 × 10–6 to 90 × 10–6 M with a lower limit of detection (LOD) of 3.25 × 10–7 M and a limit of quantification (LOQ) of 10.84 × 10–7 M. The PARNMCNTPE shows decent stability, repeatability, and reproducibility for the detection of ETL. Additionally, the PARNMCNTPE analytical applicability was studied for ETL detection in medicinal samples.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. H. Kuhl, Climacteric 8, 3–63 (2005)

    Article  CAS  PubMed  Google Scholar 

  2. Puri 2005 Elsevier India. 793– ISBN 978, -81–8147–844–3.

  3. M.O. Leticia, A. Deonir, C.S. Luiz et al., Sens. Actuator B. Chem. 241, 978–984 (2017)

    Article  Google Scholar 

  4. M. Numazawa, M. Nagaoka, M. Tsuji et al., J. Chem. Soc. Chem. Commun. 8, 383–384 (1981)

    Article  Google Scholar 

  5. F.H. Cincotto, T.C. Canevari, S.A.S. Machado et al., Electrochim. Acta 174, 332–339 (2015)

    Article  CAS  Google Scholar 

  6. H.J. Fu, Y. Wang, X.X. Dong, RSC Adv. 6, 65588–65593 (2016)

    Article  CAS  ADS  Google Scholar 

  7. J.G. Manjunatha, Sens. Biosens. Res. 16, 79–84 (2017)

    Google Scholar 

  8. P. Gan, R.G. Compton, J.S. Foord, Electroanalysis. 25, 2423–2434 (2013)

    Article  CAS  Google Scholar 

  9. T.S. Chen, K.L. Huang, Int. J. Electrochem. Sci. 8, 6343–6353 (2013)

    Article  CAS  Google Scholar 

  10. D.Z. Tu, H.L. Wu, Y.N. Li et al., Anal. Methods 4, 222–229 (2012)

    Article  CAS  Google Scholar 

  11. I. Esarino, F.H. Cincotto, S.A.S. Machado, Sens. Actuator. B Chem. 210, 453–459 (2015)

    Article  Google Scholar 

  12. J. Piwowarska, S. Radowicki, Pachecka J. Talanta. 81, 275–280 (2010)

    Article  CAS  PubMed  Google Scholar 

  13. A.P. Fonseca, D.L.D. Lima, Esteves. V I Water Air Soil Pollut. 215, 441–447 (2011)

    Article  CAS  ADS  Google Scholar 

  14. X. Luo, G. Li, Y. Hu, Talanta 165, 377–383 (2017)

    Article  CAS  PubMed  Google Scholar 

  15. V. Pacakova, L. Loukotkova, Z. Bosakova et al., J. Sep. Sci. 32, 867–882 (2009)

    Article  CAS  PubMed  Google Scholar 

  16. N. Tagawa, H. Tsuruta, A. Fujinami et al., J. Chromatogr. B Biomed. Sci. Appl. 723, 39–45 (1999)

    Article  CAS  PubMed  Google Scholar 

  17. A. Penalver, E. Pocurull, F. Borrull et al., J. Chromatogr. A 964, 153–160 (2002)

    Article  CAS  PubMed  Google Scholar 

  18. L. Wang, F. Yuan, H.Q. Chen et al., Spectrochim Acta A Mol. Biomol. Spectrosc. 9, 295–300 (2012)

    Article  ADS  Google Scholar 

  19. F.R.W. Reis, J.C.D. Araujo, E.M. Vieira, Quim. Nova 29, 817–822 (2006)

    Article  Google Scholar 

  20. X. Huang, D. Yuan, B. Huang, Atlanta. 75, 172–177 (2008)

    CAS  Google Scholar 

  21. P. Su, X.X. Zhang, Y.C. Wang et al., Talanta 60, 969–975 (2003)

    Article  CAS  PubMed  Google Scholar 

  22. S. Flor, S. Lucangioli, M. Contin et al., Electrophoresis 31, 3305–3313 (2010)

    Article  CAS  PubMed  Google Scholar 

  23. Y.K.K. Koh, T.Y. Chiu, A. Boobis et al., J. Chromatogr. A 1173, 81–87 (2007)

    Article  CAS  PubMed  Google Scholar 

  24. Y. Tang, S. Zhao, Y. Wu et al., Anal. Methods 5, 4068–4073 (2013)

    Article  CAS  Google Scholar 

  25. Z. Li, S. Wang, N.A. Lee et al., Anal. Chim. Acta 503, 171–177 (2004)

    Article  CAS  Google Scholar 

  26. E. Molaakbari, A. Mostafavi, H. Beitollahi et al., Analyst 139, 4356–4364 (2014)

    Article  CAS  PubMed  ADS  Google Scholar 

  27. R. Shashanka, D. Chaira, B.E. Kumara Swamy, Int. J. Electrochem. Sci. 10, 5586–5598 (2015)

    Article  CAS  Google Scholar 

  28. G.K. Jayaprakash, B.E. Kumara-Swamy, R. Flores-Moreno, K. Pineda-Urbina, Catalysts 13, 100 (2023)

    Article  Google Scholar 

  29. S. Rajendrachari, G.K. Jayaprakash, B.G. Prakashaiah, B.E. Mohan Kumar, K. Swamy, Mater. Res. Innov. 26, 229–239 (2022)

    Article  Google Scholar 

  30. G.K. Jayaprakash, B.E. Kumara Swamy, S.C. Sharma, J.J. Santoyo-Flores, Microchem. J. 158, 105116 (2020)

    Article  Google Scholar 

  31. S. Rajendrachari, B.E. Kumaraswamy, Phys. Chem. Res. 8, 1–18 (2020)

    Google Scholar 

  32. G.K. Jayaprakash, R. Flores-Moreno, B.E. Kumara-Swamy, K. Mohanty, P. Dhiman, J. Electrochem. Sci. Eng. 12, 1001–1008 (2022)

    CAS  Google Scholar 

  33. R. Shashanka, B.E. Kumara Swamy, Appl. Sci. 2, 956 (2020)

    CAS  Google Scholar 

  34. G.K. Jayaprakash, B.E. Kumara Swamy, B.N. Chandrashekar, R. Flores-Moreno, J. Mol. Liq. 240, 395–401 (2017)

    Article  CAS  Google Scholar 

  35. S. Wang, W. Huang, G. Fang, J. He, Y. Zhang, Anal. Chim. Acta 606, 194–201 (2008)

    Article  CAS  PubMed  Google Scholar 

  36. N.S. Lisboa, C.S. Fahning, G. Cotrim, J.P. Anjos, J.B. Andrade, V. Hatje, G.O. Rocha, Talanta 117, 168–175 (2013)

    Article  CAS  PubMed  Google Scholar 

  37. V.K. Gupta, A.K. Jain, G. Maheshwari, H. Lang, Z. Ishtaiwi, Actuators. B 117, 99–106 (2006)

    Article  CAS  Google Scholar 

  38. P.S. Ganesh, B.E. Kumara Swamy, J. Electroanal. Chem. 756, 193–200 (2015)

    Article  CAS  Google Scholar 

  39. R.N. Goyal, V.K. Gupta, N. Bachheti, Anal. Chim. Acta 597, 82–89 (2007)

    Article  CAS  PubMed  Google Scholar 

  40. J.G. Manjunatha, Int. J. Chem. Technol. Res. 9, 136–146 (2016)

    CAS  Google Scholar 

  41. B. Saravanakumar, G. Ravi, V. Ganesh, K. Ramesh, R. Guduru, R. Yuvakkumar, MSET 2, 130–138 (2019)

    Google Scholar 

  42. N. Hareesha, J.G. Manjunatha, B.M. Amrutha, P.A. Pushpanjali, M.M. Charithra, S.N. Prinith, J. Electron. Mater. 50, 1230–1238 (2021)

    Article  CAS  ADS  Google Scholar 

  43. P.A. Pushpanjali, J.G. Manjunatha, H. Nagarajappa, E.S. D’Souza, M.M. Charithra, N.S. Prinith, Surf. Interfaces. 24, 101154 (2021)

    Article  CAS  Google Scholar 

  44. S.B. Sinnott, R. Andrews, Cri. Rev. Solid State. 26, 145–249 (2001)

    Article  CAS  Google Scholar 

  45. N. Hareesha, J.G. Manjunatha, C. Raril et al., Adv. Pharm. Bull. 9, 132–137 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. P.A. Pushpanjali, J.G. Manjunatha, C. Raril et al., RJLBPCS. 5, 820–832 (2019)

    CAS  Google Scholar 

  47. N. Hareesha, J.G. Manjunatha, Sci. Rep. 11, 12797 (2021)

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  48. E.J. Laviron, Electroanal. Chem. 39, 1–23 (1972)

    Article  CAS  Google Scholar 

  49. M.M. Charithra, J.G. Manjunatha, Mater. Sci. Energy Technol. 2, 365–371 (2019)

    Google Scholar 

  50. L.V. Jodar, F.A. Santos, V. Zucolotto et al., J Solid State Electro. 22, 1431–1438 (2017)

    Article  Google Scholar 

  51. L.M. Ochiai, D. Agustini, L.C.S. Figueiredo-Filho, C.E. Banks, L.H. MarcolinoJunior, M.F. Bergamini, Sens. Actuators B 241, 978–984 (2017)

    Article  CAS  Google Scholar 

  52. N. Hareesha, J.G. Manjunatha, Mater. Res. Innovations 24, 349–362 (2019)

    Article  ADS  Google Scholar 

  53. K.D. Santos, O.C. Braga, I.C. Vieira, A. Spinelli, Talanta 80, 1999–2006 (2010)

    Article  CAS  PubMed  Google Scholar 

  54. X. Lin, Y. Li, Biosens. Bioelectron. 22, 253–259 (2006)

    Article  CAS  PubMed  Google Scholar 

  55. J.G. Manjunatha, G.K. Jayaprakash, Eurasian J. Anal. Chem. 14, 1–11 (2019)

    CAS  Google Scholar 

Download references

Acknowledgements

Kanthappa gratefully acknowledges the financial support from the SC/ST Cell for the SC/ST Fellowship (No. MU/SCTRF/CR5/2019-20/SCT-1), Mangalore University. Dr JG Manjunatha gratefully acknowledges the financial support from the VGST, Bangalore, under Research Project. No. VGST/KFIST L-2/2022-23/GRD-1020. Ahmed Muteb Aljuwayid and Mohamed A. Habila are thankful to the Researchers Supporting Project Number (RSPD2023R584) King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamballi G. Manjunatha.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This article is original, has not been published previously in any form or language, and is not under consideration for publication elsewhere.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhimaraya, K., Manjunatha, J.G., Nagarajappa, H. et al. Enhanced voltammetric detection of estriol hormone using poly(l-arginine)-modified carbon nanotube paste as a responsive electrochemical sensor. J IRAN CHEM SOC 21, 129–138 (2024). https://doi.org/10.1007/s13738-023-02911-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-023-02911-w

Keywords

Navigation