Skip to main content
Log in

Transition metal complexes of pyridazine-based ligand: synthesis, characterization, biological activities, and molecular docking studies

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

A new class of pyridazine-based six Iron(II), Nickel(II) and Copper(II) metal complexes of (E)-2-(6-chloropyridazin-3-yl)-1-(1-(pyridin-2-yl)ethylidene)hydrazine ligand (L1)(1) derived from condensation of 2-(6-chloropyridazin-3-yl)hydrazine and pyridine-2-acetaldehyde were synthesized in 1:1 and 1:2 molar ratio with ligand and characterized by UV–visible, 1H- and 13C-NMR, FT-IR, mass and EPR spectroscopy, elemental analysis and molar conductance. The spectroscopic evidence specifies that the ligands behave as a tridentate ligand through the nitrogen atom of pyridine-2-acetaldehyde, nitrogen atoms of azomethine group and pyridazine ring. The mass spectra demonstrated that the complexes have prepared in 1:1 and 1:2 molar ratio with ligand and suitable metals salts. From the ESR spectroscopy, confirmed that the Cu(L1)(4) complex had the square planar geometry, whereas Cu(L1)2(7) complex had distorted octahedral geometry. The ligand and its six metal complexes were evaluated for their in vitro antibacterial activity against Staphylococcus aureus (MTCC 96), Streptococcus pyogenes (MTCC 442), Escherichia coli(MTCC 443), Pseudomonas aeruginosa (MTCC 1688) strains, and in vitro antifungal activity against Candida albicans (MTCC 227), Aspergillus niger (MTCC 282), and Aspergillus clavatus (MTCC 1323) strains by using micro-broth dilution method against standard antibiotics Gentamycin, Ampicillin, Chloramphenicol, Ciprofloxacin, Norfloxacin, and antifungal agents Nystatin and Griseofulvin. Cytotoxicity assays against human colon cancer MiaPaCa-2 and PanC-1 cell lines in vitro were completed for ligand (L1) by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium by (MTT) method. Finally, the optimized structures of the ligand and its complexes have been used to accomplish molecular docking studies with receptors of DNA Gyrase (PDB ID-1aj6) enzyme to determine the most preferred mode of interaction.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Mohammad; Open J. Org. Chem. 1, 11–21 (2013).

  2. A. Mohammad, A. Singh, J. Pharm. Negat. 2, 69–72 (2011)

    Google Scholar 

  3. A. Sener, Turk. J. Chem. 28, 39–46 (2004)

    CAS  Google Scholar 

  4. Y.Q. Xu, J.C. Liu, W.T. Deng, J. Cao, Transit. Met. Chem. 39, 25–32 (2014)

    Article  Google Scholar 

  5. H. Bel Abed, O. Mammoliti, O. Bande, G. Van Lommen, P. Herdewijn, J. Org. Chem. 78, 7845–7858 (2013)

    Article  CAS  PubMed  Google Scholar 

  6. J. Cao, J.C. Liu, W.T. Deng, N.Z. Jin, CrystEngComm 15, 6359–6367 (2013)

    Article  CAS  Google Scholar 

  7. K.R. Grunwald, M. Volpe, P. Cias, G. Gescheidt, N.C. Mosch-Zanetti, Inorg. Chem. 50, 7478–7488 (2011). https://doi.org/10.1021/ic200279g

    Article  CAS  PubMed  Google Scholar 

  8. K. R. Grünwald, G. Saischek, M. Volpe, F. Belaj, N. C. Mösch‐Zanetti; Eur. J. Inorg. Chem. 2297–2305 (2010).

  9. H. Khanmohammadi, M. Darvishpour, Dyes Pigm. 81, 167–173 (2009)

    Article  CAS  Google Scholar 

  10. E. Kremer, G. Facchin, E. Estévez, P. Alborés, E.J. Baran, J. Ellena, M.H. Torre, Inorg. Biochem. 100, 1167–1175 (2006)

    Article  CAS  Google Scholar 

  11. J. Bouffard, R.F. Eaton, P. Müller, T.M. Swager, J. Org. Chem. 72, 10166–10180 (2007)

    Article  CAS  PubMed  Google Scholar 

  12. P. Bergthaller, R. Stolzenburg, P. Marx, A. G. Agfa Gevaert; U.S. Patent No. 4,767,698. Washington, DC: U.S. Patent and Trademark Office.

  13. A. Deeb, F. El-Mariah, M. Hosny, Bioorg. Med. Chem. Lett. 14, 5013–5017 (2004)

    Article  CAS  PubMed  Google Scholar 

  14. U.M. Rafi, D. Mahendiran, A.K. Haleel, R.P. Nankar, M. Doble, A.K. Rahiman, New J. Chem. 40, 2451–2465 (2016)

    Article  CAS  Google Scholar 

  15. S. Eckhardt, S. Semin, Diagn. Pathol. 2, 419–439 (2002). https://doi.org/10.2174/1568011024606389

    Article  CAS  Google Scholar 

  16. F. Rojo, J. Albanell, A. Rovira, J.M. Corominas, F. Manzarbeitia, Semin. Diagn. Pathol. 25, 245–261 (2008). https://doi.org/10.1053/j.semdp.2008.08.001

    Article  PubMed  Google Scholar 

  17. K.M. Hatzade, A.M. Ghatole, P.K. Gaidhane, M.K. Gaidhane, G.P. Gadekar, Med. Chem. Res. 30, 163–181 (2021)

    Article  CAS  Google Scholar 

  18. M. Gaidhane, A. Ghatole, K. Lanjewar, K. Hatzade, Turk. J. Chem. 44, 1495–1514 (2020)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. C.A. Lipinski, F. Lombardo, B.W. Dominy, P.J. Feeney, Adv. Drug Deliv. Rev. 23, 3–35 (1997)

    Article  CAS  Google Scholar 

  20. A.M. Ghatole, M.K. Gaidhane, K.R. Lanjewar, K.M. Hatzade, Bulg. J. Sci. Educ. 29, 206–244 (2020)

    CAS  Google Scholar 

  21. A. Daina, V. Zoete, Chem. Med. Chem. 11, 1117–1121 (2016)

    Article  CAS  PubMed  Google Scholar 

  22. Schaper K. J., United States Patent, 4997835 (1991).

  23. S.S. Patil, S.K. Tadavi, A. Dikundwar, R.S. Bendre, J. Mol. Struct. 1247, 131293 (2022)

    Article  CAS  Google Scholar 

  24. J.F. Geldard, F. Lions, Inorg. Chem. 4, 414–417 (1965)

    Article  CAS  Google Scholar 

  25. F. Lions, K.V. Martin, Inorg. Chem. 80, 3858–3865 (1958)

    CAS  Google Scholar 

  26. R. Bendre, A. Murugkar, S. Padhye, P. Kulkarni, M. Karve, Met.-Based Drugs 5, 59–66 (1998)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. B. Hathaway, D.E. Billing, Coord. Chem. Rev. 5, 143–207 (1970)

    Article  CAS  Google Scholar 

  28. A.H. Maki, B.R. McGarvey, J. Chem. Phys. 29, 35–38 (1958)

    Article  CAS  Google Scholar 

  29. J.R. Wasson, C. Trapp, J. Phys. Chem. 73, 3763–3772 (1969)

    Article  CAS  Google Scholar 

  30. S.M. Khalil, J. Coord. Chem. 49, 45–61 (1999)

    Article  CAS  Google Scholar 

  31. R.T. Bhoi, J.D. Rajput, R.S. Bendre, Res. Chem. Intermed. 48, 401–422 (2022)

    Article  CAS  Google Scholar 

  32. A. Sahraei, H. Kargar, M. Hakimi, M.N. Tahir, J. Mol. Struct. 1149, 576–584 (2017). https://doi.org/10.1016/j.molstruc.2017.08.022

    Article  CAS  Google Scholar 

  33. A. Sahraei, H. Kargar, M. Hakimi, M.N. Tahir, Transit. Met. Chem. 42, 483–489 (2017). https://doi.org/10.1007/s11243-017-0152-x

    Article  CAS  Google Scholar 

  34. H. Kargar, F. Aghaei-Meybodi, R. Behjatmanesh-Ardakani, M.R. Elahifard, V. Torabi, M. Fallah-Mehrjardi, K.S. Munawar, J. Mol. Struct. 1230, 129908 (2021)

    Article  CAS  Google Scholar 

  35. H. Kargar, A.A. Ardakani, M.N. Tahir, M. Ashfaq, K.S. Munawar, J. Mol. Struct. 1233, 130112 (2021)

    Article  CAS  Google Scholar 

  36. H. Kargar, F. Aghaei-Meybodi, M.R. Elahifard, M.N. Tahir, M. Ashfaq, K.S. Munawar, J. Coord. Chem. 74, 9–10 (2021). https://doi.org/10.1080/00958972.2021.1900831

    Article  CAS  Google Scholar 

  37. N.J. Marshall, C.J. Goodwin, S.J. Holt, Growth Regul. 5, 69–84 (1995)

    CAS  PubMed  Google Scholar 

  38. A.M. Ghatole, M.K. Gaidhane, K.R. Lanjewar, K.M. Hatzade, Indian J. Chem. 60, 303–320 (2021)

    Google Scholar 

  39. A. Jamshidvand, M. Sahihi, V. Mirkhani, M. Moghadam, I. Mohammadpoor-Baltork, S. Tangestaninejad, S. Gharaghani, J. Mol. Liq. 253(61), 71 (2018). https://doi.org/10.1016/j.molliq.2018.01.029

    Article  CAS  Google Scholar 

  40. H. Kargar, R. Behjatmanesh-Ardakani, V. Torabi, M. Kashani, Z. Chavoshpour-Natanzi, Z. Kazemi, K.S. Munawar, Polyhedron 195, 114988 (2021). https://doi.org/10.1016/j.poly.2020.114988

    Article  CAS  Google Scholar 

  41. H. Kargar, R. Behjatmanesh-Ardakani, V. Torabi, A. Sarvian, Z. Kazemi, Z. Chavoshpour-Natanzi, M. Ashfaq, Inorgan. Chim. Acta 514, 120004 (2021). https://doi.org/10.1016/j.ica.2020.120004

    Article  CAS  Google Scholar 

  42. A. Daina, O. Michielin, V. Zoete, Sci. Rep. 7, 42717 (2017)

    Article  PubMed Central  PubMed  Google Scholar 

  43. A. Ghose, V.N. Viswanadhan, J.J. Wendoloski, J. Comb. Chem. 1, 55–68 (1999)

    Article  CAS  PubMed  Google Scholar 

  44. W.J. Egan, K.M. Merz, J.J. Baldwin, J. Med. Chem. 43, 3867–3877 (2000)

    Article  CAS  PubMed  Google Scholar 

  45. D.F. Veber, S.R. Johnson, H.Y. Cheng, B.R. Smith, K.W. Ward, K.D. Kopple, J. Med. Chem. 45, 2615–2623 (2002)

    Article  CAS  PubMed  Google Scholar 

  46. I. Muegge, S.L. Heald, D. Brittelli, J. Med. Chem. 44, 1841–1846 (2001)

    Article  CAS  PubMed  Google Scholar 

  47. A.K. Ghose, V.N. Viswanadhan, J.J. Wendoloski, J. Phys. Chem. 102, 3762–3772 (1998). https://doi.org/10.1021/jp980230o

    Article  CAS  Google Scholar 

  48. R. Brenk, A. Schipani, D. James, A. Krasowski, I.H. Gilbert, J. Frearson, P.G. Wyatt, Chem. Med. Chem. 3, 435–444 (2008)

    Article  CAS  PubMed  Google Scholar 

  49. M.M. Hann, G.M. Keseru, Nature Rev. Drug Discov. 11, 355–365 (2012)

    Article  CAS  Google Scholar 

  50. S. Teague, A. Davis, P. Leeson, T. Oprea, Angew. Chem. Int. Ed. Engl. 38, 3743–3748 (1999)

    Article  CAS  PubMed  Google Scholar 

  51. J.S. Delaney, J. Chem. Inf. Comput. Sci. 44, 1000–1005 (2004)

    Article  CAS  PubMed  Google Scholar 

  52. J.H. Fagerberg, E. Karlsson, J. Ulander, G. Hanisch, C.A. Bergstrom, Pharm. Res. 32, 578–589 (2015)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors are thankful to UGC, New Delhi, for Major Research Project File No. 42-374/2013(SR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ratnamala S. Bendre.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patil, S.S., Tadavi, S.K., Ghatole, A.M. et al. Transition metal complexes of pyridazine-based ligand: synthesis, characterization, biological activities, and molecular docking studies. J IRAN CHEM SOC 20, 3103–3117 (2023). https://doi.org/10.1007/s13738-023-02901-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-023-02901-y

Keywords

Navigation