Skip to main content
Log in

Performance improvement of an all electrochemically constructed p-type Cu2O-based heterojunctions using high-quality n-type MZO thin films

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

This study describes the fabrication of p-Cu2O/n-MZO/FTO heterojunctions by using a simple two-step electrodeposition method. Electronic, microstructural, morphological, optical, and electrical properties have been systematically investigated by using a variety of analysis techniques. Mott–Schottky analysis indicated p-type conductivity for Cu2O and n-type conductivity for ZnO. Analysis revealed the decrease of the conduction band offset at the Cu2O/MZO interface with the contribution of Mg doping approach, which accounts for the upward movement of the conduction band edges of MZO layers. X-ray diffraction indicated that Cu2O and ZnO films were polycrystalline in nature with strong cubic Cu2O(111) and wurtzite ZnO(002)-oriented phases. Morphological analyses revealed that Mg doping could produce finer microstructures and improve the surface flatness of films. The optical measurement indicated that Mg doping enable the band gap engineering of ZnO films and the design of high-performance photovoltaic window layers. Current–voltage plots showed that Au/p-Cu2O/n-ZnO(MZO)/FTO heterojunctions exhibited an excellent rectifying behavior and their electrical performance can be effectively controlled by using Mg doping approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C. Breyer, D. Bogdanov, A. Aghahosseini, A. Gulagi, M. Child, A.S. Oyewo, J. Farfan, K. Sadovskaia, P. Vainikka, Solar photovoltaics demand for the global energy transition in the power sector. Prog. Photovolt. Res. Appl. 26(8), 505–523 (2017)

    Article  Google Scholar 

  2. F. Chigondo, From metallurgical-grade to solar-grade silicon: an overview. Silicon 10(3), 789–798 (2017)

    Article  Google Scholar 

  3. R. Vittal, K.-C. Ho, Zinc oxide based dye-sensitized solar cells: a review. Renew. Sustain. Energy Rev. 70, 920–935 (2017)

    Article  CAS  Google Scholar 

  4. M.A. Green, Thin-film solar cells: review of materials, technologies and commercial status. J. Mater. Sci. Mater. Electron. 18(S1), 15–19 (2007)

    Article  Google Scholar 

  5. S. Rühle, A.Y. Anderson, H.-N. Barad, B. Kupfer, Y. Bouhadana, E. Rosh-Hodesh, A. Zaban, All-oxide photovoltaics. J. Phys. Chem. Lett. 3(24), 3755–3764 (2012)

    Article  PubMed  Google Scholar 

  6. A. Pérez-Tomás, A. Mingorance, D. Tanenbaum, M. Lira-Cantú, Metal oxides in photovoltaics: all-oxide, ferroic, and perovskite solar cells, in The Future of Semiconductor Oxides in Next-Generation Solar Cells. (Elsevier, 2018), pp.267–356

    Chapter  Google Scholar 

  7. S. Sun, X. Zhang, Q. Yang, S. Liang, X. Zhang, Z. Yang, Cuprous oxide (Cu2O) crystals with tailored architectures: a comprehensive review on synthesis, fundamental properties, functional modifications and applications. Prog. Mater Sci. 96, 111–173 (2018)

    Article  CAS  Google Scholar 

  8. S. Rühle, Tabulated values of the Shockley–Queisser limit for single junction solar cells. Sol. Energy 130, 139–147 (2016)

    Article  Google Scholar 

  9. N.G. Elfadill, M.R. Hashim, K.M. Chahrour, S.A. Mohammed, Electrochemical deposition of Na-doped p-type Cu2O film on n-type Si for photovoltaic application. J. Electroanal. Chem. 767, 7–12 (2016)

    Article  CAS  Google Scholar 

  10. A. Janotti, C.G. Van de Walle, Fundamentals of zinc oxide as a semiconductor. Rep. Prog. Phys. 72(12), 126501 (2009)

    Article  Google Scholar 

  11. T. Minami, Y. Nishi, T. Miyata, Efficiency enhancement using a Zn1xGexO thin film as an n-type window layer in Cu2O-based heterojunction solar cells. Appl. Phys. Express 9(5), 052301 (2016)

    Article  Google Scholar 

  12. Y.S. Lee, D. Chua, R.E. Brandt, S.C. Siah, J.V. Li, J.P. Mailoa, S.W. Lee, R.G. Gordon, T. Buonassisi, Atomic layer deposited gallium oxide buffer layer enables 1.2 V open-circuit voltage in cuprous oxide solar cells. Adv. Mater. 26(27), 4704–4710 (2014)

    Article  CAS  PubMed  Google Scholar 

  13. T. Minami, T. Miyata, K. Ihara, Y. Minamino, S. Tsukada, Effect of ZnO film deposition methods on the photovoltaic properties of ZnO–Cu2O heterojunction devices. Thin Solid Films 494(1–2), 47–52 (2006)

    Article  CAS  Google Scholar 

  14. X. Chen, P. Lin, X. Yan, Z. Bai, H. Yuan, Y. Shen, Y. Liu, G. Zhang, Z. Zhang, Y. Zhang, Three-dimensional ordered ZnO/Cu2O nanoheterojunctions for efficient metal-oxide solar cells. ACS Appl. Mater. Interfaces 7(5), 3216–3223 (2015)

    Article  CAS  PubMed  Google Scholar 

  15. B. Kramm, A. Laufer, D. Reppin, A. Kronenberger, P. Hering, A. Polity, B.K. Meyer, The band alignment of Cu2O/ZnO and Cu2O/GaN heterostructures. Appl. Phys. Lett. 100(9), 094102 (2012)

    Article  Google Scholar 

  16. A.S. Zoolfakar, R.A. Rani, A.J. Morfa, S. Balendhran, A.P. O’Mullane, S. Zhuiykov, K. Kalantar-zadeh, Enhancing the current density of electrodeposited ZnO–Cu2O solar cells by engineering their heterointerfaces. J. Mater. Chem. 22(40), 21767 (2012)

    Article  CAS  Google Scholar 

  17. D.C. Olson, S.E. Shaheen, M.S. White, W.J. Mitchell, M.F.A.M. van Hest, R.T. Collins, D.S. Ginley, Band-offset engineering for enhanced open-circuit voltage in polymer–oxide hybrid solar cells. Adv. Func. Mater. 17(2), 264–269 (2007)

    Article  CAS  Google Scholar 

  18. J. Kaur, O. Bethge, R.A. Wibowo, N. Bansal, M. Bauch, R. Hamid, E. Bertagnolli, T. Dimopoulos, All-oxide solar cells based on electrodeposited Cu2O absorber and atomic layer deposited ZnMgO on precious-metal-free electrode. Sol. Energy Mater. Sol. Cells 161, 449–459 (2017)

    Article  CAS  Google Scholar 

  19. Y. Ievskaya, R.L.Z. Hoye, A. Sadhanala, K.P. Musselman, J.L. MacManus-Driscoll, Fabrication of ZnO/Cu2O heterojunctions in atmospheric conditions: Improved interface quality and solar cell performance. Sol. Energy Mater. Sol. Cells 135, 43–48 (2015)

    Article  CAS  Google Scholar 

  20. T. Minami, Y. Nishi, T. Miyata, S. Abe, Photovoltaic properties in Al-doped ZnO/non-doped Zn1xMgxO/Cu2O heterojunction solar cells. ECS Trans. 50(51), 59–68 (2013)

    Article  Google Scholar 

  21. H.S. Sajjadizadeh, E.K. Goharshadi, H. Ahmadzadeh, Photoelectrochemical water splitting by engineered multilayer TiO2/GQDs photoanode with cascade charge transfer structure. Int. J. Hydrog. Energy 45, 123–134 (2020)

    Article  CAS  Google Scholar 

  22. H.S. Sajjadizadeh, H. Ahmadzadeh, E.K. Goharshadi, M. Aziznezhad, Engineering of a high-efficiency water splitting photoanode by synergistic effects of doping, compositing, and coupling on TiO2 nanoparticles. Electrochim. Acta 362, 137149 (2020)

    Article  CAS  Google Scholar 

  23. Z. Zhang, P.J. Wang, Highly stable copper oxide composite as an effective photocathode for water splitting via a facile electrochemical synthesis strategy. Mater. Chem. 22(6), 2456–2464 (2012)

    Article  CAS  Google Scholar 

  24. H.-Y. Liu, H. Kong, X.-M. Ma, W.-Z. Shi, Microstructure and electrical properties of ZnO-based varistors prepared by high-energy ball milling. J. Mater. Sci. 42(8), 2637–2642 (2007)

    Article  CAS  Google Scholar 

  25. D. Kang, D. Lee, K.-S. Choi, Electrochemical synthesis of highly oriented, transparent, and pinhole-free ZnO and Al-doped ZnO films and their use in heterojunction solar cells. Langmuir 32(41), 10459–10466 (2016)

    Article  CAS  PubMed  Google Scholar 

  26. A.C. Aragonès, A. Palacios-Padrós, F. Caballero-Briones, F. Sanz, Study and improvement of aluminium doped ZnO thin films: limits and advantages. Electrochim. Acta 109, 117–124 (2013)

    Article  Google Scholar 

  27. F.K. Shan, G.X. Liu, W.J. Lee, B.C. Shin, Stokes shift, blue shift and red shift of ZnO-based thin films deposited by pulsed-laser deposition. J. Cryst. Growth 291(2), 328–333 (2006)

    Article  CAS  Google Scholar 

  28. Z.J. Othman, A. Matoussi, F. Fabbri, F. Rossi, G. Salviati, Optical and structural properties of Zn1xMgxO ceramic materials. Appl. Phys. A 116(3), 1501–1509 (2014)

    Article  CAS  Google Scholar 

  29. C.M. McShane, K.-S. Choi, Junction studies on electrochemically fabricated pn Cu2O homojunction solar cells for efficiency enhancement. Phys. Chem. Chem. Phys. 14(17), 6112 (2012)

    Article  CAS  PubMed  Google Scholar 

  30. Y. Xu, M.A.A. Schoonen, The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am. Miner. 85(3–4), 543–556 (2000)

    Article  CAS  Google Scholar 

  31. Z. Duan, A. Du Pasquier, Y. Lu, Y. Xu, E. Garfunkel, Effects of Mg composition on open circuit voltage of Cu2O–MgxZn1xO heterojunction solar cells. Sol. Energy Mater. Sol. Cells 96, 292–297 (2012)

    Article  CAS  Google Scholar 

  32. C. Yu, X. Zhang, Synthesis of a Cu2O/carbon film/NiCoB-graphene oxide heterostructure as photocathode for photoelectrochemical water splitting. ChemElectroChem 6, 2004–2012 (2019)

    Article  CAS  Google Scholar 

  33. L.I. Bendavid, E.A. Carter, First-principles predictions of the structure, stability, and photocatalytic potential of Cu2O surfaces. J. Phys. Chem. B 117(49), 15750–15760 (2013)

    Article  CAS  PubMed  Google Scholar 

  34. B. Meyer, D. Marx, Density-functional study of the structure and stability of ZnO surfaces. Phys. Rev. B (2003). https://doi.org/10.1103/PhysRevB.67.035403

    Article  Google Scholar 

  35. O. Baka, M.R. Khelladi, L. Mentar, A. Azizi, Growth and properties of electrodeposited transparent Al-doped ZnO nanostructures. J. Korean Phys. Soc. 67, L2011–L2014 (2015)

    Article  Google Scholar 

  36. K. Pradeev raj, K. Sadaiyandi, A. Kennedy, S. Sagadevan, Z.Z. Chowdhury, M.R.B. Johan, F.A. Aziz, R.F. Rafique, T. Selvi, R. Rathina bala, Influence of Mg doping on ZnO nanoparticles for enhanced photocatalytic evaluation and antibacterial analysis. Nanoscale Res Lett 13, 23 (2018). https://doi.org/10.1186/s11671-018-2643-x

    Article  CAS  Google Scholar 

  37. M. Sharma, P. Jeevanandam, Magnesium doping in hierarchical ZnO nanostructures and studies on optical properties. Superlattices Microstruct. 52(6), 1083–1092 (2012)

    Article  CAS  Google Scholar 

  38. S. Suwanboon, P. Amornpitoksuk, Preparation of Mg-doped ZnO nanoparticles by mechanical milling and their optical properties. Procedia Eng. 32, 821–826 (2012)

    Article  CAS  Google Scholar 

  39. R. Kara, R. Siab, A. Azizi, Effect of i-ZnO seed layer on the properties of electrodeposited p-Cu2O/n-ZnO/FTO heterojunction thin films. Mater. Res. Express 6, 126402 (2019)

    Article  CAS  Google Scholar 

  40. J. Mass, P. Bhattacharya, R. Katiyar, Effect of high substrate temperature on Al-doped ZnO thin films grown by pulsed laser deposition. Mater. Sci. Eng. B 103(1), 9–15 (2003)

    Article  Google Scholar 

  41. R. Kara, H. Lahmar, L. Mentar, R. Siab, F. Kadirgan, A. Azizi, Electrochemical growth and characterization of Cu2O: Na/ZnO heterojunctions for solar cells applications. J. Alloys Compd. 817, 152748 (2019)

    Article  Google Scholar 

  42. R. Mehdaoui, L. Chaabane, E. Beyou, M.H.V. Baouab, Sono-heterogeneous Fenton system for degradation of AB74 dye over a new tetraaza macrocyclic Schiff base cellulose ligand-loaded Fe3O4 nanoparticles. J. Iran. Chem. Soc. (2018). https://doi.org/10.1007/s13738-018-1539-0

    Article  Google Scholar 

  43. I.S. Brandt, M.A. Tumelero, C.A. Martins, C.C. Plá Cid, R. Faccio, A.A. Pasa, Defects controlling electrical and optical properties of electrodeposited Bi doped Cu2O. J. Appl. Phys. 123(16), 161412 (2018)

    Article  Google Scholar 

  44. B. Thomas, S. Deepa, K. Prasanna Kumari, Influence of surface defects and preferential orientation in nanostructured Ce-doped SnO2 thin films by nebulizer spray deposition for lowering the LPG sensing temperature to 150 °C. Ionics 25, 809 (2018)

    Article  Google Scholar 

  45. K. Chehhat, R. Kara, A. Mecif, A facile and low cost synthesis of multifunctional AZO thin films for rapid and effective removal of Orange II dyes under sunlight irradiation. J. Iran. Chem. Soc. 20, 1791 (2023)

    Article  Google Scholar 

  46. P. Raju, D. Deivatamil, J.A. Martin Mark, J.P. Jesuraj, Antibacterial and catalytic activity of Cu doped ZnO nanoparticles: structural, optical, and morphological study. J. Iran. Chem. Soc. 19, 861 (2021)

    Article  Google Scholar 

  47. R. Kara, R. Siab, Parametric study of seed-layer-assisted electrochemical growth of high-quality ZnMgO thin films on ZnO-coated FTO substrates: effect of seed layers thickness. Appl. Phys. A 127, 793 (2021)

    Article  CAS  Google Scholar 

  48. A. Ashrafi, Y. Segawa, Blueshift in MgxZn1xO alloys: nature of bandgap bowing. J. Appl. Phys. 104(12), 123528 (2008)

    Article  Google Scholar 

  49. R. Kara, L. Mentar, A. Azizi, Synthesis and characterization of Mg-doped ZnO thin-films electrochemically grown on FTO substrates for optoelectronic applications. RSC Adv. 10(66), 40467–40479 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. S. Hussain, C. Cao, W.S. Khan, G. Nabi, Z. Chen, Z. Usman, Z. Ali, F.K. Butt, T. Mahmood, Fabrication and electrical characterization of p-Cu2O/n-ZnO heterojunction. J. Nanosci. Nanotechnol. 12(3), 1967–1971 (2012)

    Article  CAS  PubMed  Google Scholar 

  51. M. Karimi-Nazarabad, E.K. Goharshadi, H.S. Sajjadizadeh, Copper–Azolate framework coated on g-C3N4 nanosheets as a core–shell heterojunction and decorated with a Ni(OH)2 cocatalyst for efficient photoelectrochemical water splitting. J. Phys. Chem. C 126(19), 8327–8336 (2022)

    Article  CAS  Google Scholar 

  52. M. Karimi-Nazarabad, H. Ahmadzadeh, E.K. Goharshadi, Porous perovskite-lanthanum cobaltite as an efficient cocatalyst in photoelectrocatalytic water oxidation by bismuth doped g-C3N4. Sol. Energy 227, 426–437 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the laboratory of Chemistry, Molecular Engineering and Nanostructures, Ferhat Abbas-Sétif 1 University, Algeria, which we thank. We would like to express our sincere thanks to Amor Azizi and Rachid Siab for their assistance and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rania Kara.

Ethics declarations

Conflict of interest

The author has no competing interests to declare.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kara, R., Nazir, R. Performance improvement of an all electrochemically constructed p-type Cu2O-based heterojunctions using high-quality n-type MZO thin films. J IRAN CHEM SOC 20, 2849–2860 (2023). https://doi.org/10.1007/s13738-023-02881-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-023-02881-z

Keywords

Navigation