Skip to main content
Log in

Fabrication of a highly sensitive new ANT/MoS2/Fe3O4/GCE nanocomposite electrochemical sensor for herbicide Paraquat residual in environmental water resources

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Here, the fabrication of a new electrode based on providing an electrocatalytic substrate by a newly assembled nanocomposition is reported. Ferric oxide-molybdenum disulfide-anthracite (Fe3O4–MoS2–ANT) modified glassy carbon electrode (GCE) was fabricated by a simple procedure and characterized by scanning electronic microscopy (SEM) and electrochemical impedance spectroscopy (EIS). The modified electrode was used as the sensing device for the voltammetric determination of paraquat (PQ), an important herbicide in environmental water resources. The sensor showed good electrocatalytic activity toward the reduction of PQ. We found that the electrochemical sensitivity and durability of the modified GCE enhance in the presence of ANT. Cyclic voltammetric (CV) and differential pulse voltammetry (DVP) were used and the results showed that the Fe3O4/MoS2/ANT composition provides excellent electrocatalytic response for the determination of PQ. The electrochemical responses of the ANT/MoS2/Fe3O4/GCE were investigated to find optimal conditions of scan rate, pH, type of supporting electrolyte, and response repeatability. A linear response of 0.5–180.0 µM with a correlation coefficient (R2) of 0.997 and a detection limit (LOD) of 0.03 µM of PQ were obtained under the optimized conditions. Reasonable recoveries of PQ were obtained between 93.33 and 101.95% for tested river water samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. R. Rajaram, L. Neelakantan, Recent advances in estimation of paraquat using various analytical techniques: A review. Result. Chem. 5, 100703–100719 (2023). https://doi.org/10.1016/j.rechem.2022.100703

    Article  CAS  Google Scholar 

  2. Y. Huang, H. Zhan, P. Bhatt, S. Chen, Paraquat degradation from contaminated environments: current achievements and perspectives. Front. Microbiol. 10, 1754–1763 (2019). https://doi.org/10.3389/fmicb.2019.01754

    Article  PubMed  PubMed Central  Google Scholar 

  3. Y.H. Jo, K.E. Kim, J.E. Rhee, G.J. Suh, W.Y. Kwon, S.H. Na, H.B. Alam, Therapeutic hypothermia attenuates acute lung injury in paraquat intoxication in rats. Resuscitation 82, 487–491 (2011). https://doi.org/10.1016/j.resuscitation.2010.11.028

    Article  CAS  PubMed  Google Scholar 

  4. C.M. Tanner, F. Kamel, G.W. Ross, J.A. Hoppin, S.M. Goldman et al., Rotenone, Paraquat, and Parkinson’s disease. Environ. Health Perspect. 119, 866–872 (2011). https://doi.org/10.1289/ehp.1002839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. F. Maya, J.M. Estela, V. Cerdà, Improved spectrophotometric determination of paraquat in drinking waters exploiting a multisyringe liquid core waveguide system. Talanta 85, 588–595 (2011). https://doi.org/10.1016/j.talanta.2011.04.022

    Article  CAS  PubMed  Google Scholar 

  6. H. Luo, X. Wang, Y. Huang, K. Lai, B.A. Rasco, Y. Fan, Rapid and sensitive surface-enhanced Raman spectroscopy (SERS) method combined with gold nanoparticles for determination of paraquat in apple juice. J. Sci. Food Agricult. 98, 3892–3898 (2018). https://doi.org/10.1002/jsfa.8906

    Article  CAS  Google Scholar 

  7. M.L. Roldán, G. Corrado, O. Francioso, S. Sanchez-Cortes, Interaction of soil humic acids with herbicide paraquat analyzed by surface-enhanced Raman scattering and fluorescence spectroscopy on silver plasmonic nanoparticles. Anal. Chim. Acta 699, 87–95 (2011). https://doi.org/10.1016/j.aca.2011.05.001

    Article  CAS  PubMed  Google Scholar 

  8. R.D. Whitehead Jr., M.A. Montesano, N.K. Jayatilaka, B. Buckley, B. Winnik, L.L. Needham, D.B. Barr, Method for measurement of the quaternary amine compounds paraquat and diquat in human urine using high-performance liquid chromatography–tandem mass spectrometry. J. Chromatogr. B 878, 2548–2553 (2010). https://doi.org/10.1016/j.jchromb.2009.09.029

    Article  CAS  Google Scholar 

  9. Z. Zhao, F. Zhang, Z. Zhang, A facile fluorescent ‘turn-off’ method for sensing paraquat based on pyranine-paraquat interaction. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 199, 96–101 (2018). https://doi.org/10.1016/j.saa.2018.03.042.

  10. Y. Zhang, Y. Huang, L. Fu, J. Qiu, Z. Wang, A. Wu, Colorimetric detection of paraquat in aqueous and fruit juice samples based on functionalized gold nanoparticles. J. Food Compos. Anal. 92, 103574 (2020). https://doi.org/10.1016/j.jfca.2020.103574.

  11. N. Lamei, M. Ezoddin, N.R. Kakavandi, K. Abdi, M. Ghazi-khansari, Ultrasound-assisted switchable solvent in determination of quaternary ammonium herbicide paraquat in biological, environmental water, and apple juice samples using chemical reduction process coupled to GC–MS detection. Chromatographia 81, 923–930 (2018). https://doi.org/10.1007/s10337-018-3500-x

    Article  CAS  Google Scholar 

  12. E. Molaakbari, A. Mostafavi, H. Beitollahi, First electrochemical report for simultaneous determination of norepinephrine, Tyrosine and Nicotine using a nanostructure based sensor. Electroanalysis 26, 2252–2260 (2014). https://doi.org/10.1002/elan.201400338

    Article  CAS  Google Scholar 

  13. Y. Zhang, G.M. Zeng, L. Tang, J. Chen, Y. Zhu, X.X. He, Y. He, Electrochemical sensor based on electrodeposited graphene-Au modified electrode and NanoAu carrier amplified signal strategy for attomolar mercury detection. Anal. Chem. 87, 989–996 (2015). https://doi.org/10.1021/ac503472p

    Article  CAS  PubMed  Google Scholar 

  14. E. Turker Acar, S. Ortaboy, G. Hisarl, G. Atun, Sensitive determination and electro-oxidative polymerization of azodyes on a carbon paste electrode modified with bentonite. Appl. Clay Sci. 105–106, 131–141 (2015). https://doi.org/10.1016/j.clay.2014.12.035.

  15. A. Mohadesi, H. Beitollahi, Electrochemical and catalytic investigations of levodopa and folic acid by modified carbon nanotube paste electrode. Anal. Methods 3, 2562–2567 (2011). https://doi.org/10.1039/C1AY05344B

    Article  CAS  Google Scholar 

  16. S. Ebrahimiasl, R. Seifi, R. Nahli, Z. Eftekhar, AzmiPpy/nanographene modified pencil graphite electrode nano sensor for detection and determination of herbicides in agricultural water. Sci. Adv. Mater. 9, 2045–2053 (2017). https://doi.org/10.1166/sam.2017.3110

    Article  CAS  Google Scholar 

  17. X. Ye, Y. Gu, C. Wang, Fabrication of the Cu2O/polyvinyl pyrrolidone-graphene modified glassy carbon-rotating disk electrode and its application for sensitive detection of herbicide paraquat. Sens. Actuat. B 173, 530–539 (2012). https://doi.org/10.1016/j.snb.2012.07.047

    Article  CAS  Google Scholar 

  18. A. Farahi, M. Achak, L. E-Gaini, M. A. El-Mhammedi, M. Bakasse, Electrochemical determination of paraquat in citric fruit based on electrodeposition of silver particles onto carbon paste electrode. J. Food Drug Anal. 23, 463–471 (2015). https://doi.org/10.1016/j.jfda.2015.03.003.

  19. J. Zhang, Z. Lin, Y. Qin, Y. Li, X. Liu, Q. Li, H. Huang, Fabricated electrochemical sensory platform based on the boron nitride ternary nanocomposite film electrode for paraquat detection. ACS Omega 4, 18398–18404 (2019). https://doi.org/10.1021/acsomega.9b02658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. F. Laghrib, M. Bakasse, S. Lahrich, M.A. El Mhammedi, Electrochemical sensors for improved detection of paraquat in food samples: a review. Mater. Sci. Eng. C 107, 11034 (2020). https://doi.org/10.1016/j.msec.2019.110349

    Article  CAS  Google Scholar 

  21. F.Y. Kong, R.F. Li, L. Yao, Z.X. Wang, H.Y. Li, W.J. Wang, W. Wang, A novel electrochemical sensor based on Au nanoparticles/8-aminoquinoline functionalized graphene oxide nanocomposite for paraquat detection. Nanotechnology. 30, 285502 (2019). https://doi.org/10.1088/1361-6528/ab10ac.

  22. J.A. Ribeiro, C.A. Carreira, H.J. Lee, F. Silva, A. Martins, C.M. Pereira, Voltammetric determination of paraquat at DNA-gold nanoparticle composite electrodes. Electrochim. Acta 55, 7892–7896 (2010). https://doi.org/10.1016/j.electacta.2010.03.058

    Article  CAS  Google Scholar 

  23. P. Chuntib, S. Themsirimongkon, S. Saipany, J. Jakmunee, Sequential injection differential pulse voltammetric method based on screen printed carbon electrode modified with carbon nanotube/Nafion for sensitive determination of paraquat. Talanta 170, 1–8 (2017). https://doi.org/10.1016/j.talanta.2017.03.073

    Article  CAS  PubMed  Google Scholar 

  24. J. Liu, W. Fang, Z. Wei, Z. Qin, Z. Jiang, W. Shangguan, Metallic 1T-LixMoS2 co-catalyst enhanced photocatalytic hydrogen evolution over ZnIn2S4 floriated microspheres under visible light irradiation. Catal. Sci. Technol. 8, 1375–1382 (2018). https://doi.org/10.1039/C7CY02456H

    Article  CAS  Google Scholar 

  25. A. Ambrosi, Z. Sofer, M. Pumera, Lithium intercalation compound dramatically influences the electrochemical properties of exfoliated MoS2. Small 11, 605–612 (2015). https://doi.org/10.1002/smll.201400401

    Article  CAS  PubMed  Google Scholar 

  26. Y. Zhou, C. Gao, Y.C. Guo, UV assisted ultrasensitive trace NO2 gas sensing based on few-layer MoS2 nanosheet-ZnO nanowire heterojunctions at room temperature. J. Mater. Chem. A 6, 10286–10296 (2018). https://doi.org/10.1039/C8TA02679C

    Article  CAS  Google Scholar 

  27. Y. Jiang, X. Li, S. Yu, L. Jia, X. Zhao, C. Wang, Reduced graphene oxide-modified carbon nanotube/polyimide film supported MoS2 nanoparticles for electrocatalytic hydrogen evolution. ADV. Funct. Mater. 25, 2693–2700 (2015). https://doi.org/10.1002/adfm.201500194

    Article  CAS  Google Scholar 

  28. N. Lingappan, N.H. Van, S. Lee, D.J. Kang, Growth of three-dimensional flower-like molybdenum disulfide hierarchical structures on graphene/carbon nanotube network: an advanced heterostructure for energy storage devices. J. Power Sourc. 280, 39–46 (2015). https://doi.org/10.1016/j.jpowsour.2015.01.064

    Article  CAS  Google Scholar 

  29. X. Zhang, P. Ding, Y. Sun, Y. Wang, Y. Wu, J. Guo, Shell-core MoS2 nanosheets@Fe3O4 sphere heterostructure with exposed active edges for efficient electrocatalytic hydrogen production. J. Alloys Compounds 715, 53–59 (2017). https://doi.org/10.1016/j.jallcom.2017.04.315

    Article  CAS  Google Scholar 

  30. Y. Zhang, P. Chen, F.F. Wen, B. Yuan, H. Wang, Fe3O4 nanospheres on MoS2 nanoflake: Electrocatalysis and detection of Cr(VI) and nitrite. J. Electroanal. Chem. 761, 14–20 (2016). https://doi.org/10.1016/j.jelechem.2015.12.004

    Article  CAS  Google Scholar 

  31. C.L. Han, G. Huang, D. Zhu, K. Hu, Facile synthesis of MoS2/Fe3O4 nanocomposite with excellent Photo-Fenton-like catalytic performance. Mater. Chem. Phys. 200, 16–22 (2017). https://doi.org/10.1016/j.matchemphys.2017.07.065

    Article  CAS  Google Scholar 

  32. Z. Li, Y. Zhang, W. Zhang, Controlled synthesis of CNTs/MoS2/Fe3O4 for high-performance supercapacitors. Mater. Res. Express 4, 055018 (2017). https://doi.org/10.1088/2053-1591/aa6c3f.

  33. M.M. Maroto-Valer, Z. Tang, Y. Zhang, CO2 capture by activated and impregnated anthracites. Fuel Proc. Technol. 86, 1487–1502 (2005). https://doi.org/10.1016/j.fuproc.2005.01.003

    Article  CAS  Google Scholar 

  34. D. Lozano-Castelló, M.A. Lillo-Ródenas, D. Cazorla-Amorós, A. Linares-Solano, Preparation of activated carbons from Spanish anthracite: I. Activation by KOH. Carbon 39, 741–749 (2001). https://doi.org/10.1016/S0008-6223(00)00185-8

    Article  Google Scholar 

  35. H. Parham, B. Zargar, F. Khoshnam, Ultrasonic-assisted solid-phase extraction pre-concentration and determination of nicotinamide and nicotinic acid by high-performance liquid chromatography using anthracite extraction. Food. Anal. Methods 8, 2235–2242 (2015). https://doi.org/10.1007/s12161-015-0095-9

    Article  Google Scholar 

  36. H. Parham, S. Saeed, Pre-concentration and determination of traces of nitrobenzene and 1,3-dinitrobenzene in water samples using anthracite adsorbent. J. Indust. Engin. Chemistry 20, 1003–1009 (2014). https://doi.org/10.1016/j.jiec.2013.06.035

    Article  CAS  Google Scholar 

  37. M.H. Liao, D.H. Chen, Preparation and characterization of a novel magnetic nano-adsorbent. J. Mater. Chem. 12, 3654–3659 (2002). https://doi.org/10.1039/B207158D

    Article  CAS  Google Scholar 

  38. L. Carlos, S. de F-Filho, V. Santos, Differential pulse voltammetric determination of paraquat using a bismuth-film electrode. Electroanalysis 22 , 1260–1266 (2010) . https://doi.org/10.1002/elan.200900553.

  39. T. Paramalinggam, A.R.M. Yusoff, M.S. Qureshi, Z.A. Shah, P. Sathishkumar, Z. Yusop, M. Khalid, F.M. Khokhar, Determination of Paraquat dichloride from water samples using differential pulse cathodic stripping voltammetry. Russ. J. Electrochem. 54, 1155–1163 (2018). https://doi.org/10.1134/S1023193518140069

    Article  CAS  Google Scholar 

  40. A. Savary, A. Yari, Determination of the herbicide paraquat using the new Ag-GO/CuO/GCE-modified glassy carbon electrode by differential pulse voltammetry. J. Chin. Chem. Soc. 1, 1–11 (2021). https://doi.org/10.1002/jccs.202100094

    Article  CAS  Google Scholar 

  41. M. Ma, Y. Zhang, W. Yu, H. Shen, H. Zhang, N. Gu, Preparation and characterization of magnetite nanoparticles coated by amino silane. Colloids Surf. A 212, 219–226 (2003). https://doi.org/10.1016/S092741

    Article  CAS  Google Scholar 

  42. D. De Souza, S.A.S. Machado, Electrochemical detection of the herbicide paraquat in natural water and citric fruit juices using microelectrodes. Anal. Chem. Acta 546, 85–91 (2005). https://doi.org/10.1016/j.aca.2005.05.020

    Article  CAS  Google Scholar 

  43. I.C. Lopes, D.D. Souza, S.A.S. Machado, A.A. Tanaka, Voltammetric detection of paraquat pesticide on a phthalocyanine-based pyrolitic graphite electrode. Anal. Bioanal. Chem. 388, 1907–1914 (2007). https://doi.org/10.1007/s00216-007-1397-6

    Article  CAS  PubMed  Google Scholar 

  44. T.G. Diaz, A.G. Cabanillas, F. Salinas, Square-wave and differential pulse oxidative voltammetric determination of diquat and paraquat in alkaline medium. Electroanalysis 12, 616 (2000). https://doi.org/10.1002/(SICI)15214109(200005)12:8%3c616::AID-ELAN616%3e3.0.CO;2-X

    Article  CAS  Google Scholar 

  45. Z. Pourakbari, M. Sheykhan, Al.Aliakbar, A new poly carboxylic catex polymer-gold nanoparticles modified electrode for determination of paraquat by voltammetry method. J. Environ. Chem. Engin. 8, 104284 (2020). https://doi.org/10.1016/j.jece.2020.104284.

  46. L.L.C. Garcia, L.C.S. Figueiredo-Filho, G.G. Oliveira, O. Fatibello-Filho, C.E. Banks, Square-wave voltammetric determination of paraquat using a glassy carbon electrode modified with multiwalled carbon nanotubes within a dihexadecyl hydrogen phosphate (DHP) film. Sens. Actuat. B 181, 306–311 (2013). https://doi.org/10.1016/j.snb.2013.01.091

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We sincerely thank Dr. Mohsen Adeli and his team for their effective assistance in the synthesis of nanocomposites.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdollah Yari.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yari, A., Savari, A. Fabrication of a highly sensitive new ANT/MoS2/Fe3O4/GCE nanocomposite electrochemical sensor for herbicide Paraquat residual in environmental water resources. J IRAN CHEM SOC 20, 1939–1948 (2023). https://doi.org/10.1007/s13738-023-02810-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-023-02810-0

Keywords

Navigation