Skip to main content
Log in

Fabrication and application of copper metal–organic frameworks as nanocarriers for pH-responsive anticancer drug delivery

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Copper-based metal−organic frameworks (Cu-MOFs) have been extensively used in delivery of several therapeutics because of their cytocompatibility, favorable degradation and structural flexibility. In this work, we investigated two types of Cu-MOF-based nanocomposites including GO/Cu-TCPP and Fe3O4@Cu3(BTC)2 for loading of doxorubicin (DOX) and pH-sensitive release of the drug in vitro. The Fe3O4@Cu3(BTC)2 is an octahedron network structure, while the GO/Cu-TCPP nanocomposite consists of copper (II)-porphyrin metal–organic framework (Cu-TCPP) crystals embedded between exfoliated graphene oxide (GO) layers. Our studies show that GO/Cu-TCPP has adsorbed more doxorubicin (DOX) (45.7 wt.%) compared to Fe3O4@Cu3(BTC)2 (40.5 wt.%). More drug loading for Cu3(BTC)2 was also obtained than that of Cu-TCPP. For GO/Cu-TCPP at pH 5, 98.9% of DOX released for 60 h and 33.5% of DOX released after 60 h at pH 7.4, while the released amount of DOX from Fe3O4@Cu3(BTC)2 at pH 5 reached 85.5% and 33.5% at pH 7.4 afterward 60 h. The difference between the amount of drug released in two nanocomposites related to drug loading capacity demonstrating the impact nanocomposite structure on the smart MOF construction for pH-responsive behavior in vitro. Based on the results, the GO/Cu-TCPP and Fe3O4@Cu3(BTC)2 nanocomposites possess low toxicity and good biocompatibility, but DOX-loaded GO/Cu-TCPP generate better toxicity to cancer cells compared with Fe3O4@Cu3(BTC)2-DOX.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. Estanqueiro, M.H. Amaral, J. Conceição, J.M.S. Lobo, Nanotechnological carriers for cancer chemotherapy: the state of the art. Colloids Surf. B 126, 631–648 (2015)

    Article  CAS  Google Scholar 

  2. Z. Abbas, S. Rehman, An overview of cancer treatment modalities. Neoplasm 1, 139–157 (2018)

    Google Scholar 

  3. W.T. Al-Jamal, K. Kostarelos, Liposomes: from a clinically established drug delivery system to a nanoparticle platform for theranostic nanomedicine. Acc. Chem. Res. 44, 1094–1104 (2011)

    Article  CAS  PubMed  Google Scholar 

  4. M. Molina, M. Asadian-Birjand, J. Balach, J. Bergueiro, E. Miceli, M. Calderón, Stimuli-responsive nanogel composites and their application in nanomedicine. Chem. Soc. Rev. 44, 6161–6186 (2015)

    Article  CAS  PubMed  Google Scholar 

  5. Q. He, J. Shi, F. Chen, M. Zhu, L. Zhang, An anticancer drug delivery system based on surfactant-templated mesoporous silica nanoparticles. Biomaterials 31, 3335–3346 (2010)

    Article  CAS  PubMed  Google Scholar 

  6. P. Chowdhury, C. Bikkina, S. Gumma, Gas adsorption properties of the chromium-based metal organic framework MIL-101. J. Phys. Chem. C 113, 6616–6621 (2009)

    Article  CAS  Google Scholar 

  7. P. Mishra, S. Edubilli, H.P. Uppara, B. Mandal, S. Gumma, Effect of adsorbent history on adsorption characteristics of MIL-53 (Al) metal organic framework. Langmuir 29, 12162–12167 (2013)

    Article  CAS  PubMed  Google Scholar 

  8. D. Sahu, P. Mishra, S. Edubilli, A. Verma, S. Gumma, Hydrogen adsorption on Zn-BDC, Cr-BDC, Ni-DABCO, and Mg-DOBDC metal–organic frameworks. J. Chem. Eng. Data 58, 3096–3101 (2013)

    Article  CAS  Google Scholar 

  9. P. Horcajada, C. Serre, M. Vallet-Regí, M. Sebban, F. Taulelle, G. Férey, Metal–organic frameworks as efficient materials for drug delivery. Angew. Chem. 118, 6120–6124 (2006)

    Article  Google Scholar 

  10. C. Wang, D. Liu, W. Lin, Metal–organic frameworks as a tunable platform for designing functional molecular materials. J. Am. Chem. Soc. 135, 13222–13234 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. P. Horcajada, R. Gref, T. Baati, P.K. Allan, G. Maurin, P. Couvreur, G. Ferey, R.E. Morris, C. Serre, Metal–organic frameworks in biomedicine. Chem. Rev. 112, 1232–1268 (2012)

    Article  CAS  PubMed  Google Scholar 

  12. L. Cooper, T. Hidalgo, M. Gorman, T. Lozano-Fernández, R. Simón-Vázquez, C. Olivier, N. Guillou, C. Serre, C. Martineau, F. Taulelle, A biocompatible porous Mg-gallate metal–organic framework as an antioxidant carrier. Chem. Commun. 51, 5848–5851 (2015)

    Article  CAS  Google Scholar 

  13. H.-N. Wang, G.-S. Yang, X.-L. Wang, Z.-M. Su, pH-induced different crystalline behaviors in extended metal–organic frameworks based on the same reactants. Dalton Trans. 42, 6294–6297 (2013)

    Article  CAS  PubMed  Google Scholar 

  14. J. Zhuang, C.-H. Kuo, L.-Y. Chou, D.-Y. Liu, E. Weerapana, C.-K. Tsung, Optimized metal–organic-framework nanospheres for drug delivery: evaluation of small-molecule encapsulation. ACS Nano 8, 2812–2819 (2014)

    Article  CAS  PubMed  Google Scholar 

  15. L. Wang, M. Zheng, Z. Xie, Nanoscale metal–organic frameworks for drug delivery: a conventional platform with new promise. J. Mater. Chem. B 6, 707–717 (2018)

    Article  CAS  PubMed  Google Scholar 

  16. Z. Gharehdaghi, R. Rahimi, S.M. Naghib, F. Molaabasi, Cu (II)-porphyrin metal–organic framework/graphene oxide: synthesis, characterization, and application as a pH-responsive drug carrier for breast cancer treatment. JBIC J. Biol. Inorg. Chem. 26, 689–704 (2021)

    Article  CAS  PubMed  Google Scholar 

  17. X. Leng, H. Huang, W. Wang, N. Sai, L. You, X. Yin, J. Ni, Zirconium-porphyrin PCN-222: pH-responsive controlled anticancer drug oridonin. Evid. Based Complement. Altern. Med. (2018). https://doi.org/10.1155/2018/3249023

    Article  Google Scholar 

  18. G. Wang, L. Jin, Y. Dong, L. Niu, Y. Liu, F. Ren, X. Su, Multifunctional Fe 3 O 4–CdTe@ SiO 2–carboxymethyl chitosan drug nanocarriers: synergistic effect towards magnetic targeted drug delivery and cell imaging. New J. Chem. 38, 700–708 (2014)

    Article  CAS  Google Scholar 

  19. A.Z. Wilczewska, K. Niemirowicz, K.H. Markiewicz, H. Car, Nanoparticles as drug delivery systems. Pharmacol. Rep. 64, 1020–1037 (2012)

    Article  CAS  PubMed  Google Scholar 

  20. S. Nigam, K. Barick, D. Bahadur, Development of citrate-stabilized Fe3O4 nanoparticles: conjugation and release of doxorubicin for therapeutic applications. J. Magn. Magn. Mater. 323, 237–243 (2011)

    Article  CAS  Google Scholar 

  21. C. Feng, L. Shan, Q. Wang, Y. Lei, X. Wang, K. Nan, C. Ding, Z. Han, Dual-mode imaging system based on Fe3O4@ CuInS2 core-shell structure. (2020)

  22. R. Ma, P. Yang, Y. Ma, F. Bian, Facile synthesis of magnetic hierarchical core-shell structured Fe3O4@ PDA-Pd@ MOF nanocomposites: highly integrated multifunctional catalysts. ChemCatChem 10, 1446–1454 (2018)

    Article  CAS  Google Scholar 

  23. P. Simamora, M. Manullang, J. Munthe, J. Rajagukguk, The structural and morphology properties of Fe3O4/Ppy nanocomposite. J. Phys. Conf. Ser. 1120, 012063 (2018)

    Article  CAS  Google Scholar 

  24. H.-Z. Zhao, Y.-Y. Chang, C. Liu, Electrodes modified with iron porphyrin and carbon nanotubes: application to CO 2 reduction and mechanism of synergistic electrocatalysis. J. Solid State Electrochem. 17, 1657–1664 (2013)

    Article  CAS  Google Scholar 

  25. H. Zhao, Y. Chang, C. Liu, Electrochemical behavior of electrodes modified with metalloporphyrin and multiwalled carbon nanotubes for the reduction of oxygen, proton and carbon dioxide. J. Porphyrins Phthalocyanines 17, 259–263 (2013)

    Article  CAS  Google Scholar 

  26. C. Tan, X. Cao, X.-J. Wu, Q. He, J. Yang, X. Zhang, J. Chen, W. Zhao, S. Han, G.-H. Nam, Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 117, 6225–6331 (2017)

    Article  CAS  PubMed  Google Scholar 

  27. Y. Chen, Z. Fan, Z. Zhang, W. Niu, C. Li, N. Yang, B. Chen, H. Zhang, Two-dimensional metal nanomaterials: synthesis, properties, and applications. Chem. Rev. 118, 6409–6455 (2018)

    Article  CAS  PubMed  Google Scholar 

  28. S.S.-Y. Chui, S.M.-F. Lo, J.P. Charmant, A.G. Orpen, I.D. Williams, A chemically functionalizable nanoporous material [Cu3 (TMA) 2 (H2O) 3] n. Science 283, 1148–1150 (1999)

    Article  CAS  PubMed  Google Scholar 

  29. T. Granato, F. Testa, R. Olivo, Catalytic activity of HKUST-1 coated on ceramic foam. Microporous Mesoporous Mater. 153, 236–246 (2012)

    Article  CAS  Google Scholar 

  30. L. Grajciar, A.D. Wiersum, P.L. Llewellyn, J.-S. Chang, P. Nachtigall, Understanding CO2 adsorption in CuBTC MOF: comparing combined DFT–ab initio calculations with microcalorimetry experiments. J. Phys. Chem. C 115, 17925–17933 (2011)

    Article  CAS  Google Scholar 

  31. E. Borfecchia, S. Maurelli, D. Gianolio, E. Groppo, M. Chiesa, F. Bonino, C. Lamberti, Insights into adsorption of NH3 on HKUST-1 metal–organic framework: a multitechnique approach. J. Phys. Chem. C 116, 19839–19850 (2012)

    Article  CAS  Google Scholar 

  32. S. Loera-Serna, J. Zarate-Rubio, D.Y. Medina-Velazquez, L. Zhang, E. Ortiz, Encapsulation of urea and caffeine in Cu3 (BTC) 2 metal–organic framework. Surf. Innov. 4, 76–87 (2016)

    Article  Google Scholar 

  33. B. Supronowicz, A. Mavrandonakis, T. Heine, Interaction of biologically important organic molecules with the unsaturated copper centers of the HKUST-1 metal–organic framework: an ab-initio study. J. Phys. Chem. C 119, 3024–3032 (2015)

    Article  CAS  Google Scholar 

  34. Z.S. Hasankola, R. Rahimi, H. Shayegan, E. Moradi, V. Safarifard, Removal of Hg2+ heavy metal ion using a highly stable mesoporous porphyrinic zirconium metal-organic framework. Inorg. Chim. Acta 501, 119264 (2020)

    Article  CAS  Google Scholar 

  35. N.I. Kovtyukhova, P.J. Ollivier, B.R. Martin, T.E. Mallouk, S.A. Chizhik, E.V. Buzaneva, A.D. Gorchinskiy, Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chem. Mater. 11, 771–778 (1999)

    Article  CAS  Google Scholar 

  36. G. Xu, T. Yamada, K. Otsubo, S. Sakaida, H. Kitagawa, Facile “modular assembly” for fast construction of a highly oriented crystalline MOF nanofilm. J. Am. Chem. Soc. 134, 16524–16527 (2012)

    Article  CAS  PubMed  Google Scholar 

  37. T. Zeng, Y.-R. Ma, H.-Y. Niu, Y.-Q. Cai, A novel Fe 3 O 4–graphene–Au multifunctional nanocomposite: green synthesis and catalytic application. J. Mater. Chem. 22, 18658–18663 (2012)

    Article  CAS  Google Scholar 

  38. L. Wang, J. Liang, Y. Zhu, T. Mei, X. Zhang, Q. Yang, Y. Qian, Synthesis of Fe 3 O 4@ C core–shell nanorings and their enhanced electrochemical performance for lithium-ion batteries. Nanoscale 5, 3627–3631 (2013)

    Article  CAS  PubMed  Google Scholar 

  39. X. Zhao, S. Liu, Z. Tang, H. Niu, Y. Cai, W. Meng, F. Wu, J.P. Giesy, Synthesis of magnetic metal-organic framework (MOF) for efficient removal of organic dyes from water. Sci. Rep. 5, 1–10 (2015)

    Google Scholar 

  40. L.H. Wee, M.R. Lohe, N. Janssens, S. Kaskel, J.A. Martens, Fine tuning of the metal–organic framework Cu 3 (BTC) 2 HKUST-1 crystal size in the 100 nm to 5 micron range. J. Mater. Chem. 22, 13742–13746 (2012)

    Article  CAS  Google Scholar 

  41. K. Schlichte, T. Kratzke, S. Kaskel, Improved synthesis, thermal stability and catalytic properties of the metal-organic framework compound Cu3 (BTC) 2. Microporous Mesoporous Mater. 73, 81–88 (2004)

    Article  CAS  Google Scholar 

  42. S. Motoyama, R. Makiura, O. Sakata, H. Kitagawa, Highly crystalline nanofilm by layering of porphyrin metal− organic framework sheets. J. Am. Chem. Soc. 133, 5640–5643 (2011)

    Article  CAS  PubMed  Google Scholar 

  43. C. Hontoria-Lucas, A. López-Peinado, J. de D. López-González, M. Rojas-Cervantes, R. Martin-Aranda, Study of oxygen-containing groups in a series of graphite oxides: physical and chemical characterization. Carbon 33, 1585–1592 (1995)

    Article  CAS  Google Scholar 

  44. Y. Yang, F. Xia, Y. Yang, B. Gong, A. Xie, Y. Shen, M. Zhu, Litchi-like Fe 3 O 4@ Fe-MOF capped with HAp gatekeepers for pH-triggered drug release and anticancer effect. J. Mater. Chem. B 5, 8600–8606 (2017)

    Article  CAS  PubMed  Google Scholar 

  45. T. Zeng, X. Zhang, S. Wang, Y. Ma, H. Niu, Y. Cai, Assembly of a nanoreactor system with confined magnetite core and shell for enhanced fenton-like catalysis. Chem. A Eur. J. 20, 6474–6481 (2014)

    Article  CAS  Google Scholar 

  46. R. Rahimi, S. Shariatinia, S. Zargari, M.Y. Berijani, A. Ghaffarinejad, Z.S. Shojaie, Synthesis, characterization, and photocurrent generation of a new nanocomposite based Cu–TCPP MOF and ZnO nanorod. RSC Adv. 5, 46624–46631 (2015)

    Article  CAS  Google Scholar 

  47. M. Jahan, Q. Bao, K.P. Loh, Electrocatalytically active graphene–porphyrin MOF composite for oxygen reduction reaction. J. Am. Chem. Soc. 134, 6707–6713 (2012)

    Article  CAS  PubMed  Google Scholar 

  48. F. Ke, Y.-P. Yuan, L.-G. Qiu, Y.-H. Shen, A.-J. Xie, J.-F. Zhu, X.-Y. Tian, L.-D. Zhang, Facile fabrication of magnetic metal–organic framework nanocomposites for potential targeted drug delivery. J. Mater. Chem. 21, 3843–3848 (2011)

    Article  CAS  Google Scholar 

  49. T. Zeng, H.-Y. Niu, Y.-R. Ma, W.-H. Li, Y.-Q. Cai, In situ growth of gold nanoparticles onto polydopamine-encapsulated magnetic microspheres for catalytic reduction of nitrobenzene. Appl. Catal. B 134, 26–33 (2013)

    Article  CAS  Google Scholar 

  50. T. Zeng, X. Zhang, Y. Ma, S. Wang, H. Niu, Y. Cai, A functional rattle-type microsphere with a magnetic-carbon double-layered shell for enhanced extraction of organic targets. Chem. Commun. 49, 6039–6041 (2013)

    Article  CAS  Google Scholar 

  51. T.J. Bandosz, C. Petit, MOF/graphite oxide hybrid materials: exploring the new concept of adsorbents and catalysts. Adsorption 17, 5–16 (2011)

    Article  CAS  Google Scholar 

  52. H.-X. Zhao, Q. Zou, S.-K. Sun, C. Yu, X. Zhang, R.-J. Li, Y.-Y. Fu, Theranostic metal–organic framework core–shell composites for magnetic resonance imaging and drug delivery. Chem. Sci. 7, 5294–5301 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. U. Kanwal, N.I. Bukhari, N.F. Rana, M. Rehman, K. Hussain, N. Abbas, A. Mehmood, A. Raza, Doxorubicin-loaded quaternary ammonium palmitoyl glycol chitosan polymeric nanoformulation: uptake by cells and organs. Int. J. Nanomed. 14, 1 (2019)

    Article  CAS  Google Scholar 

  54. R. Abazari, A.R. Mahjoub, F. Ataei, A. Morsali, C.L. Carpenter-Warren, K. Mehdizadeh, A.M. Slawin, Chitosan immobilization on bio-MOF nanostructures: a biocompatible pH-responsive nanocarrier for doxorubicin release on MCF-7 cell lines of human breast cancer. Inorg. Chem. 57, 13364–13379 (2018)

    Article  CAS  PubMed  Google Scholar 

  55. F. OuYang, B. Huang, Z. Li, J. Xiao, H. Wang, H. Xu, Chemical functionalization of graphene nanoribbons by carboxyl groups on stone-wales defects. J. Phys. Chem. C 112, 12003–12007 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was supported by Iran University of Science and Technology and Motamed Cancer Institute.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rahmatollah Rahimi or Fatemeh Molaabasi.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gharehdaghi, Z., Rahimi, R., Naghib, S.M. et al. Fabrication and application of copper metal–organic frameworks as nanocarriers for pH-responsive anticancer drug delivery. J IRAN CHEM SOC 19, 2727–2737 (2022). https://doi.org/10.1007/s13738-021-02490-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-021-02490-8

Keywords

Navigation