Skip to main content

Advertisement

Log in

Cu (II)-porphyrin metal–organic framework/graphene oxide: synthesis, characterization, and application as a pH-responsive drug carrier for breast cancer treatment

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

A new multifunctional graphene oxide/Cu (II)-porphyrin MOF nanocomposite (CuG) comprised of Cu-TCPP MOF supported on graphene oxide (GO) nanosheets, has been fabricated by a solvothermal method at low temperature and one-pot process. Cu-TCPP MOF with universal advantages, such as high porosity, nontoxicity, large surface area, and safe biodegradation, combined with GO allows the achievement of an efficient doxorubicin loading (45.7%) and smart pH-responsive release for chemotherapy. More significantly, more than 97% of DOX was released by CuG at pH 5 which was more than that at pH 7.4 (~ 33.5%), while Cu-TCPP MOF displayed DOX release of 68.5% and 49% at pH 5 and 7.4, respectively, illustrating the effect of GO on the smart MOF construction for controllable releasing behavior in vitro. The results of in vitro anticancer experiments demonstrate that the developed nanocarrier exhibited slight or no cytotoxicity on normal cells, while the drug-loaded nanocarrier increased significant cancer cell-killing ability with higher therapeutic efficacy than free DOX, indicating the sustained release behavior of the CuG nanocarrier without any “burst effect”. Moreover, the in vivo experiments demonstrated that the CuG-DOX exhibited significantly higher anticancer efficiency compared with free DOX. High anti-cancer therapeutic efficacy of this nanoscale carrier as an efficient pH sensitive agent, has the potential to enter further biomedical investigations.

Graphic abstract

A new smart multifunctional graphene oxide–Cu (II)-porphyrin MOF nanocomposite (CuG) formed of Cu-TCPP MOF and graphene oxide (GO) has successfully fabricated and demonstrated an efficient pH-responsive drug release behavior in cancer therapy without using any targeting ligand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig.3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ke F, Yuan Y-P, Qiu L-G, Shen Y-H, Xie A-J, Zhu J-F, Tian X-Y, Zhang L-D (2011) Facile fabrication of magnetic metal–organic framework nanocomposites for potential targeted drug delivery. J Mater Chem 21(11):3843–3848

    Article  CAS  Google Scholar 

  2. Torad NL, Li Y, Ishihara S, Ariga K, Kamachi Y, Lian H-Y, Hamoudi H, Sakka Y, Chaikittisilp W, Wu KC-W (2014) MOF-derived nanoporous carbon as intracellular drug delivery carriers. Chem Lett 43(5):717–719

    Article  CAS  Google Scholar 

  3. Gooneh-Farahani S, Naimi-Jamal MR, Naghib SM (2019) Stimuli-responsive graphene-incorporated multifunctional chitosan for drug delivery applications: a review. Expert Opin Drug Deliv 16(1):79–99

    Article  CAS  PubMed  Google Scholar 

  4. Yang D, Yang G, Gai S, He F, An G, Dai Y, Lv R, Yang P (2015) Au 25 cluster functionalized metal–organic nanostructures for magnetically targeted photodynamic/photothermal therapy triggered by single wavelength 808 nm near-infrared light. Nanoscale 7(46):19568–19578

    Article  CAS  PubMed  Google Scholar 

  5. Bhattacharjee A, Gumma S, Purkait MK (2018) Fe3O4 promoted metal organic framework MIL-100 (Fe) for the controlled release of doxorubicin hydrochloride. Microporous Mesoporous Mater 259:203–210

    Article  CAS  Google Scholar 

  6. Xue Y-N, Huang Z-Z, Zhang J-T, Liu M, Zhang M, Huang S-W, Zhuo R-X (2009) Synthesis and self-assembly of amphiphilic poly (acrylic acid-b-DL-lactide) to form micelles for pH-responsive drug delivery. Polymer 50(15):3706–3713

    Article  CAS  Google Scholar 

  7. Wang D, Zhou J, Chen R, Shi R, Xia G, Zhou S, Liu Z, Zhang N, Wang H, Guo Z (2016) Magnetically guided delivery of DHA and Fe ions for enhanced cancer therapy based on pH-responsive degradation of DHA-loaded Fe3O4@ C@ MIL-100 (Fe) nanoparticles. Biomaterials 107:88–101

    Article  CAS  PubMed  Google Scholar 

  8. He C, Lu K, Liu D, Lin W (2014) Nanoscale metal–organic frameworks for the co-delivery of cisplatin and pooled siRNAs to enhance therapeutic efficacy in drug-resistant ovarian cancer cells. J Am Chem Soc 136(14):5181–5184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cunha D, Ben Yahia M, Hall S, Miller SR, Chevreau H, Elkaïm E, Maurin G, Horcajada P, Serre C (2013) Rationale of drug encapsulation and release from biocompatible porous metal–organic frameworks. Chem Mater 25(14):2767–2776

    Article  CAS  Google Scholar 

  10. Zhu X, Gu J, Wang Y, Li B, Li Y, Zhao W, Shi J (2014) Inherent anchorages in UiO-66 nanoparticles for efficient capture of alendronate and its mediated release. Chem Commun 50(63):8779–8782

    Article  CAS  Google Scholar 

  11. Horcajada P, Serre C, Vallet-Regí M, Sebban M, Taulelle F, Férey G (2006) Metal–organic frameworks as efficient materials for drug delivery. Angew Chem 118(36):6120–6124

    Article  Google Scholar 

  12. Liu W, Pan Y, Xiao W, Xu H, Liu D, Ren F, Peng X, Liu J (2019) Recent developments on zinc (ii) metal–organic framework nanocarriers for physiological pH-responsive drug delivery. MedChemComm 10(12):2038–2051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zeng J-Y, Wang X-S, Zhang M-K, Li Z-H, Gong D, Pan P, Huang L, Cheng S-X, Cheng H, Zhang X-Z (2017) Universal porphyrinic metal-organic framework coating to various nanostructures for functional integration. ACS Appl Mater Interfaces 9(49):43143–43153

    Article  CAS  PubMed  Google Scholar 

  14. Leng X, Huang H, Wang W, Sai N, You L, Yin X, Ni J (2018) Zirconium-porphyrin PCN-222: pH-responsive controlled anticancer drug Oridonin. Evid-Based Complement Altern Med 2018:1–12

    Google Scholar 

  15. Liu W, Wang YM, Li YH, Cai SJ, Yin XB, He XW, Zhang YK (2017) Fluorescent imaging-guided chemotherapy-and-photodynamic dual therapy with nanoscale porphyrin metal–organic framework. Small 13(17):1603459

    Article  CAS  Google Scholar 

  16. Ma Y, Li X, Li A, Yang P, Zhang C, Tang B (2017) H2S-activable MOF nanoparticle photosensitizer for effective photodynamic therapy against cancer with controllable singlet-oxygen release. Angew Chem 129(44):13940–13944

    Article  Google Scholar 

  17. Lv F, Mao L, Liu T (2014) Thermosensitive porphyrin-incorporated hydrogel with four-arm PEG–PCL copolymer: preparation, characterization and fluorescence imaging in vivo. Mater Sci Eng, C 43:221–230

    Article  CAS  Google Scholar 

  18. Parida MR, Aly SM, Alarousu E, Mohammed OF (2015) Tunable photophysical processes of porphyrin macrocycles on the surface of ZnO nanoparticles. J Phys Chem C 119(5):2614–2621

    Article  CAS  Google Scholar 

  19. Rahimi R, Zargari S, Yousefi A, Berijani MY, Ghaffarinejad A, Morsali A (2015) Visible light photocatalytic disinfection of E. coli with TiO2–graphene nanocomposite sensitized with tetrakis (4-carboxyphenyl) porphyrin. Appl Surf Sci 355:1098–1106

    Article  CAS  Google Scholar 

  20. Wei Y, Zhou F, Zhang D, Chen Q, Xing D (2016) A graphene oxide based smart drug delivery system for tumor mitochondria-targeting photodynamic therapy. Nanoscale 8(6):3530–3538

    Article  CAS  PubMed  Google Scholar 

  21. Liang J, Chen B, Hu J, Huang Q, Zhang D, Wan J, Hu Z, Wang B (2019) pH and thermal dual-responsive graphene oxide nanocomplexes for targeted drug delivery and photothermal-chemo/photodynamic synergetic therapy. ACS Appl Bio Mater 2(12):5859–5871

    Article  CAS  PubMed  Google Scholar 

  22. Javanbakht S, Pooresmaeil M, Namazi H (2019) Green one-pot synthesis of carboxymethylcellulose/Zn-based metal-organic framework/graphene oxide bio-nanocomposite as a nanocarrier for drug delivery system. Carbohyd Polym 208:294–301

    Article  CAS  Google Scholar 

  23. Pumera M (2011) Graphene-based nanomaterials for energy storage. Energy Environ Sci 4(3):668–674

    Article  CAS  Google Scholar 

  24. Zhang S, Du Z, Li G (2013) Metal-organic framework-199/graphite oxide hybrid composites coated solid-phase microextraction fibers coupled with gas chromatography for determination of organochlorine pesticides from complicated samples. Talanta 115:32–39

    Article  CAS  PubMed  Google Scholar 

  25. Js G-L, Ortuño-Lizarán I, Fernández-Sanchez L, Alió JL, Ns C, Vega-Estrada A, Silvestre-Albero J (2018) Metal-organic frameworks as drug delivery platforms for ocular therapeutics. ACS Appl Mater Interfaces 11(2):1924–1931

    Google Scholar 

  26. Chowdhuri AR, Singh T, Ghosh SK, Sahu SK (2016) Carbon dots embedded magnetic nanoparticles@ chitosan@ metal organic framework as a nanoprobe for pH sensitive targeted anticancer drug delivery. ACS Appl Mater Interfaces 8(26):16573–16583

    Article  CAS  PubMed  Google Scholar 

  27. Lin W, Hu Q, Jiang K, Yang Y, Yang Y, Cui Y, Qian G (2016) A porphyrin-based metal–organic framework as a pH-responsive drug carrier. J Solid State Chem 237:307–312

    Article  CAS  Google Scholar 

  28. Chowdhuri AR, Bhattacharya D, Sahu SK (2016) Magnetic nanoscale metal organic frameworks for potential targeted anticancer drug delivery, imaging and as an MRI contrast agent. Dalton Trans 45(7):2963–2973

    Article  CAS  Google Scholar 

  29. Ghahremani F, Shahbazi-Gahrouei D, Kefayat A, Motaghi H, Mehrgardi MA, Javanmard SH (2018) AS1411 aptamer conjugated gold nanoclusters as a targeted radiosensitizer for megavoltage radiation therapy of 4T1 breast cancer cells. RSC Adv 8(8):4249–4258

    Article  CAS  Google Scholar 

  30. Kefayat A, Ghahremani F, Motaghi H, Mehrgardi MA (2019) Investigation of different targeting decorations effect on the radiosensitizing efficacy of albumin-stabilized gold nanoparticles for breast cancer radiation therapy. Eur J Pharm Sci 130:225–233

    Article  CAS  PubMed  Google Scholar 

  31. Kefayat A, Ghahremani F, Safavi A, Hajiaghababa A, Moshtaghian J (2019) c-phycocyanin: a natural product with radiosensitizing property for enhancement of colon cancer radiation therapy efficacy through inhibition of COX-2 expression. Sci Rep 9(1):1–13

    Article  CAS  Google Scholar 

  32. Kefayat A, Ghahremani F, Safavi A, Hajiaghababa A, Moshtaghian J (2020) Spirulina extract enriched for Braun-type lipoprotein (Immulina®) for inhibition of 4T1 breast tumors’ growth and metastasis. Phytother Res 34(2):368–378

    Article  CAS  PubMed  Google Scholar 

  33. Jani AB, Schreibmann E, Goyal S, Halkar R, Hershatter B, Rossi PJ, Shelton JW, Patel PR, Xu KM, Goodman M (2021) 18F-fluciclovine-PET/CT imaging versus conventional imaging alone to guide postprostatectomy salvage radiotherapy for prostate cancer (EMPIRE-1): a single centre, open-label, phase 2/3 randomised controlled trial. Lancet 397(10288):1895–1904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Workman P, Aboagye E, Balkwill F, Balmain A, Bruder G, Chaplin D, Double J, Everitt J, Farningham D, Glennie M (2010) Guidelines for the welfare and use of animals in cancer research. Br J Cancer 102(11):1555–1577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wallace J (2000) Humane endpoints and cancer research. ILAR J 41(2):87–93

    Article  CAS  PubMed  Google Scholar 

  36. Rahimi R, Shariatinia S, Zargari S, Berijani MY, Ghaffarinejad A, Shojaie ZS (2015) Synthesis, characterization, and photocurrent generation of a new nanocomposite based Cu–TCPP MOF and ZnO nanorod. RSC Adv 5(58):46624–46631

    Article  CAS  Google Scholar 

  37. Xu G, Yamada T, Otsubo K, Sakaida S, Kitagawa H (2012) Facile “modular assembly” for fast construction of a highly oriented crystalline MOF nanofilm. J Am Chem Soc 134(40):16524–16527

    Article  CAS  PubMed  Google Scholar 

  38. Motoyama S, Makiura R, Sakata O, Kitagawa H (2011) Highly crystalline nanofilm by layering of porphyrin metal−organic framework sheets. J Am Chem Soc 133(15):5640–5643

    Article  CAS  PubMed  Google Scholar 

  39. Hontoria-Lucas C, López-Peinado A, López-González JdD, Rojas-Cervantes M, Martin-Aranda R (1995) Study of oxygen-containing groups in a series of graphite oxides: physical and chemical characterization. Carbon 33(11):1585–1592

    Article  CAS  Google Scholar 

  40. Cai D, Song M (2007) Preparation of fully exfoliated graphite oxide nanoplatelets in organic solvents. J Mater Chem 17(35):3678–3680

    Article  CAS  Google Scholar 

  41. Rance GA, Marsh DH, Nicholas RJ, Khlobystov AN (2010) UV–vis absorption spectroscopy of carbon nanotubes: relationship between the π-electron plasmon and nanotube diameter. Chem Phys Lett 493(1–3):19–23

    Article  CAS  Google Scholar 

  42. Zhou W, Hu B, Liu Z (2009) Metallo-deuteroporphyrin complexes derived from heme: a homogeneous catalyst for cyclohexane oxidation. Appl Catal A 358(2):136–140

    Article  CAS  Google Scholar 

  43. Rahimi R, Moghaddas MM, Zargari S (2013) Investigation of the anchoring silane coupling reagent effect in porphyrin sensitized mesoporous V-TiO 2 on the photodegradation efficiency of methyl orange under visible light irradiation. J Sol-Gel Sci Technol 65(3):420–429

    Article  CAS  Google Scholar 

  44. Sato T, Mori W, Kato CN, Yanaoka E, Kuribayashi T, Ohtera R, Shiraishi Y (2005) Novel microporous rhodium (II) carboxylate polymer complexes containing metalloporphyrin: syntheses and catalytic performances in hydrogenation of olefins. J Catal 232(1):186–198

    Article  CAS  Google Scholar 

  45. Jahan M, Bao Q, Loh KP (2012) Electrocatalytically active graphene–porphyrin MOF composite for oxygen reduction reaction. J Am Chem Soc 134(15):6707–6713

    Article  CAS  PubMed  Google Scholar 

  46. Dresselhaus MS (2012) Fifty years in studying carbon-based materials. Phys Scr 2012(T146):014002

    Article  CAS  Google Scholar 

  47. Wang P, Wang J, Wang X, Yu H, Yu J, Lei M, Wang Y (2013) One-step synthesis of easy-recycling TiO2-rGO nanocomposite photocatalysts with enhanced photocatalytic activity. Appl Catal B 132:452–459

    Article  CAS  Google Scholar 

  48. Blanton TN, Majumdar D (2013) Characterization of X-ray irradiated graphene oxide coatings using X-ray diffraction, X-ray photoelectron spectroscopy, and atomic force microscopy. Powder Diffr 28(2):68–71

    Article  CAS  Google Scholar 

  49. Zhou X, Huang W, Shi J, Zhao Z, Xia Q, Li Y, Wang H, Li Z (2014) A novel MOF/graphene oxide composite GrO@ MIL-101 with high adsorption capacity for acetone. J Mater Chem A 2(13):4722–4730

    Article  CAS  Google Scholar 

  50. Karimzadeh Z, Javanbakht S, Namazi H (2019) Carboxymethylcellulose/MOF-5/Graphene oxide bio-nanocomposite as antibacterial drug nanocarrier agent. Bioimpacts 9(1):5

    Article  CAS  PubMed  Google Scholar 

  51. Liu S, Sun L, Xu F, Zhang J, Jiao C, Li F, Li Z, Wang S, Wang Z, Jiang X (2013) Nanosized Cu-MOFs induced by graphene oxide and enhanced gas storage capacity. Energy Environ Sci 6(3):818–823

    Article  CAS  Google Scholar 

  52. Murakami H, Nomura T, Nakashima N (2003) Noncovalent porphyrin-functionalized single-walled carbon nanotubes in solution and the formation of porphyrin–nanotube nanocomposites. Chem Phys Lett 378(5–6):481–485

    Article  CAS  Google Scholar 

  53. Kanwal U, Bukhari NI, Rana NF, Rehman M, Hussain K, Abbas N, Mehmood A, Raza A (2019) Doxorubicin-loaded quaternary ammonium palmitoyl glycol chitosan polymeric nanoformulation: uptake by cells and organs. Int J Nanomed 14:1

    Article  CAS  Google Scholar 

  54. Yang X, Lu Y, Ma Y, Li Y, Du F, Chen Y (2006) Noncovalent nanohybrid of ferrocene with single-walled carbon nanotubes and its enhanced electrochemical property. Chem Phys Lett 420(4–6):416–420

    Article  CAS  Google Scholar 

  55. Hu T, Qahtan ASA, Lei L, Lei Z, Zhao D, Nie H (2018) Inhibition of HeLa cell growth by doxorubicin-loaded and tuftsin-conjugated arginate-PEG microparticles. Bioactive Mater 3(1):48–54

    Article  Google Scholar 

  56. OuYang F, Huang B, Li Z, Xiao J, Wang H, Xu H (2008) Chemical functionalization of graphene nanoribbons by carboxyl groups on Stone-Wales defects. J Phys Chem C 112(31):12003–12007

    Article  CAS  Google Scholar 

  57. Luan Y, Qi Y, Jin Z, Peng X, Gao H, Wang G (2015) Synthesis of a flower-like Zr-based metal–organic framework and study of its catalytic performance in the Mannich reaction. RSC Adv 5(25):19273–19278

    Article  CAS  Google Scholar 

  58. Matvienko T, Sokolova V, Prylutska S, Harahuts Y, Kutsevol N, Kostjukov V, Evstigneev M, Prylutskyy Y, Epple M, Ritter U (2019) In vitro study of the anticancer activity of various doxorubicin-containing dispersions. Bioimpacts 9(1):57

    Article  CAS  PubMed  Google Scholar 

  59. Yang X, Zhang X, Liu Z, Ma Y, Huang Y, Chen Y (2008) High-efficiency loading and controlled release of doxorubicin hydrochloride on graphene oxide. J Phys Chem C 112(45):17554–17558

    Article  CAS  Google Scholar 

  60. Abazari R, Mahjoub AR, Ataei F, Morsali A, Carpenter-Warren CL, Mehdizadeh K, Slawin AM (2018) Chitosan immobilization on bio-MOF nanostructures: a biocompatible pH-responsive nanocarrier for doxorubicin release on MCF-7 cell lines of human breast cancer. Inorg Chem 57(21):13364–13379

    Article  CAS  PubMed  Google Scholar 

  61. Nie S, Hsiao WW, Pan W, Yang Z (2011) Thermoreversible Pluronic® F127-based hydrogel containing liposomes for the controlled delivery of paclitaxel: in vitro drug release, cell cytotoxicity, and uptake studies. Int J Nanomed 6:151

    CAS  Google Scholar 

  62. Zheng H, Zhang Y, Liu L, Wan W, Guo P, Nyström AM, Zou X (2016) One-pot synthesis of metal–organic frameworks with encapsulated target molecules and their applications for controlled drug delivery. J Am Chem Soc 138(3):962–968

    Article  CAS  PubMed  Google Scholar 

  63. Lei B, Wang M, Jiang Z, Qi W, Su R, He Z (2018) Constructing redox-responsive metal–organic framework nanocarriers for anticancer drug delivery. ACS Appl Mater Interfaces 10(19):16698–16706

    Article  CAS  PubMed  Google Scholar 

  64. Chen X, Tong R, Shi Z, Yang B, Liu H, Ding S, Wang X, Lei Q, Wu J, Fang W (2018) MOF nanoparticles with encapsulated autophagy inhibitor in controlled drug delivery system for antitumor. ACS Appl Mater Interfaces 10(3):2328–2337

    Article  CAS  PubMed  Google Scholar 

  65. Shamsipur M, Molaabasi F, Sarparast M, Roshani E, Vaezi Z, Alipour M, Molaei K, Naderi-Manesh H, Hosseinkhani S (2018) Photoluminescence mechanisms of dual-emission fluorescent silver nanoclusters fabricated by human hemoglobin template: from oxidation-and aggregation-induced emission enhancement to targeted drug delivery and cell imaging. ACS Sustain Chem Eng 6(8):11123–11137

    Article  CAS  Google Scholar 

  66. Yang Y, Hu Q, Zhang Q, Jiang K, Lin W, Yang Y, Cui Y, Qian G (2016) A large capacity cationic metal–organic framework nanocarrier for physiological pH responsive drug delivery. Mol Pharm 13(8):2782–2786

    Article  CAS  PubMed  Google Scholar 

  67. Zhang F-M, Dong H, Zhang X, Sun X-J, Liu M, Yang D-D, Liu X, Wei J-Z (2017) Postsynthetic modification of ZIF-90 for potential targeted codelivery of two anticancer drugs. ACS Appl Mater Interfaces 9(32):27332–27337

    Article  CAS  PubMed  Google Scholar 

  68. Xing K, Fan R, Wang F, Nie H, Du X, Gai S, Wang P, Yang Y (2018) Dual-stimulus-triggered programmable drug release and luminescent ratiometric pH sensing from chemically stable biocompatible zinc metal-organic framework. ACS Appl Mater Interfaces 10(26):22746–22756

    Article  CAS  PubMed  Google Scholar 

  69. Gao PF, Zheng LL, Liang LJ, Yang XX, Li YF, Huang CZ (2013) A new type of pH-responsive coordination polymer sphere as a vehicle for targeted anticancer drug delivery and sustained release. J Mater Chem B 1(25):3202–3208

    Article  CAS  PubMed  Google Scholar 

  70. Kundu T, Mitra S, Patra P, Goswami A, Díaz Díaz D, Banerjee R (2014) Mechanical downsizing of a gadolinium (III)-based metal–organic framework for anticancer drug delivery. Chemistry A Eur J 20(33):10514–10518

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of this work by Iran University of Science and Technology and Motamed Cancer Institute.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rahmatollah Rahimi or Fatemeh Molaabasi.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supporting information:

Detailed description on procedures, DOX loading in Cu-TCPP MOF and CuG nanocomposites, and further characterizations, including PXRD pattern of GO, Elemental mapping of CuG1, zeta potential results for the Cu-TCPP MOF, CuG1 and CuG1-DOX, several mathematical models (Higuchi, zero order, first order and Korsmeyer–Peppas) and different kinetics parameters of DOX release from CuG1, Kinetics of DOX release from CuG1, in vitro DOX release of the Cu-TCPP MOF-DOX and CuG1-DOX at various pH with additional microscopic images are presented in supporting information (PDF 2068 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gharehdaghi, Z., Rahimi, R., Naghib, S.M. et al. Cu (II)-porphyrin metal–organic framework/graphene oxide: synthesis, characterization, and application as a pH-responsive drug carrier for breast cancer treatment. J Biol Inorg Chem 26, 689–704 (2021). https://doi.org/10.1007/s00775-021-01887-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-021-01887-3

Keywords

Navigation