Skip to main content

Advertisement

Log in

Green synthesis of nanocarbon dots using hydrothermal carbonization of lysine amino acid and its application in detection of duloxetine

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Depression is a mood disorder in which a person feels tired and bored and also unwilling to do daily activities. Duloxetine is a drug that is used to the treatment of depression and anxiety. Due to the use of different medications to treat the depression and its possible side effects, quick and accurate identification of these drugs is necessary. Also, because of the possibility of suicide in depressed people, rapid detection of drug type in drug poisoning (drug overdose) is crucial. Therefore, various sensors are used, that the most straightforward, and most accessible sensors are optical types. One of the best, simplest and safest fluorescent sensors were used for optical sensors is nanocarbon dots. In this study, a new, inexpensive and green optical biosensor was designed, and fabricated using lysine-based carbon dots to detect detection of Duloxetine. Fluorescent carbon dot was prepared by hydrothermal method. The green carbon dots were characterized by UV–visible spectroscopy, TEM, XRD and zeta sizer. Also, fluorescence of carbon dot was investigated. The CDs are spherical and the average size of the monodisperse nanoparticles was around 15 nm. The X-ray diffraction pattern represents a weak crystalline property that confirms the amorphous phase of carbon dots. The value of quantum yield for carbon dots was 31.3% to standard Quinone sulfate. The detection limit of Duloxetine was 0.002 µM. The recovery of Duloxetine was 99.2 to 101.5%, which indicates this nanosensor has a good ability to detect Duloxetine at low concentrations. The results indicate L-lysine-based CDs can be used professionally and selectively to detect of Duloxetine in real samples and human blood plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C.B. Nemeroff, A.F. Schatzberg, D.J. Goldstein, M.J. Detke, C. Mallinckrodt, Y. Lu, P.V. Tran, Duloxetine for the treatment of major depressive disorder. Psychopharmacol. Bull. 36, 106–132 (2002)

    PubMed  Google Scholar 

  2. N.J. Carter, P.L. McCormack, Duloxetine. CNS Drugs 23, 523–541 (2009)

    Article  CAS  PubMed  Google Scholar 

  3. M.P. Knadler, E. Lobo, J. Chappell, R. Bergstrom, Duloxetine. Clin. Pharmacokinet. 50, 281–294 (2011)

    Article  CAS  PubMed  Google Scholar 

  4. L. Samal, A. Prusty, Development and validation of UV-Visible spectrophotometric method for determination of Duloxetine. Int. J. Pharm. Pharm. Sci. 11, 27–31 (2019)

    Article  CAS  Google Scholar 

  5. X. Chen, C. Liang, L. Cui, J. Le, Z. Qian, R. Zhang, Z. Hong, Y. Chai, A rapid LC-MS/MS method for simultaneous determination of quetiapine and duloxetine in rat plasma and its application to pharmacokinetic interaction study. J. Food Drug Anal. 27, 323–331 (2019)

    Article  CAS  PubMed  Google Scholar 

  6. R. Jayakumar, D. Menon, K. Manzoor, S. Nair, H. Tamura, Biomedical applications of chitin and chitosan based nanomaterials—A short review. Carbohyd. Polym. 82, 227–232 (2010)

    Article  CAS  Google Scholar 

  7. P. Mehrotra, Biosensors and their applications–A review. J. Oral Biol. Craniofacial Res. 6, 153–159 (2016)

    Article  Google Scholar 

  8. K.K. Jain, The role of nanobiotechnology in drug discovery. Drug Discovery Today 10, 1435–1442 (2005)

    Article  CAS  PubMed  Google Scholar 

  9. M. Li, S.K. Cushing, N. Wu, Plasmon-enhanced optical sensors: a review. Analyst 140, 386–406 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Y. Xu, J. Liu, C. Gao, E. Wang, Applications of carbon quantum dots in electrochemiluminescence: a mini review. Electrochem. Commun. 48, 151–154 (2014)

    Article  CAS  Google Scholar 

  11. R. Das, R. Bandyopadhyay, P. Pramanik, Carbon quantum dots from natural resource: A review. Mater. Today Chem. 8, 96–109 (2018)

    Article  CAS  Google Scholar 

  12. P. Namdari, B. Negahdari, A. Eatemadi, Synthesis, properties and biomedical applications of carbon-based quantum dots: An updated review. Biomed. Pharmacother. 87, 209–222 (2017)

    Article  CAS  PubMed  Google Scholar 

  13. E.L. Rossini, M.I. Milani, H.R. Pezza, Green synthesis of fluorescent carbon dots for determination of glucose in biofluids using a paper platform. Talanta 201, 503–510 (2019)

    Article  CAS  PubMed  Google Scholar 

  14. J. Wang, J. Qiu, A review of carbon dots in biological applications. J. Mater. Sci. 51, 4728–4738 (2016)

    Article  CAS  Google Scholar 

  15. S.Y. Lim, W. Shen, Z. Gao, Carbon quantum dots and their applications. Chem. Soc. Rev. 44, 362–381 (2015)

    Article  CAS  PubMed  Google Scholar 

  16. R. Jelinek, Carbon Quantum Dots Carbon Quantum Dots (Springer International Publishing, Cham, 2017), pp. 29–46

    Book  Google Scholar 

  17. H. Behboudi, G. Mehdipour, N. Safari, M. Pourmadadi, A. Saei, M. Omidi, L. Tayebi, M. Rahmandoust, Carbon Quantum Dots in Nanobiotechnology, In: Nanomaterials for Advanced Biological Applications, Springer, Berlin (2019) 145–179.

  18. X. Zhu, T. Zhao, Z. Nie, Y. Liu, S. Yao, Non-redox modulated fluorescence strategy for sensitive and selective ascorbic acid detection with highly photoluminescent nitrogen-doped carbon nanoparticles via solid-state synthesis. Anal. Chem. 87(16), 8524–8530 (2015)

    Article  CAS  PubMed  Google Scholar 

  19. X. Huang, L. Yang, S. Hao, B. Zheng, L. Yan, F. Qu, A.M. Asiri, X. Sun, N-Doped carbon dots: a metal-free co-catalyst on hematite nanorod arrays toward efficient photoelectrochemical water oxidation. Inorg. Chem. Front. 4(3), 537–540 (2017)

    Article  CAS  Google Scholar 

  20. Y. Xu, P. Li, D. Cheng, C. Wu, Q. Lu, W. Yang, X. Zhu, P. Yin, M. Liu, H. Li, Group IV nanodots: synthesis, surface engineering and application in bioimaging and biotherapy. J.Mater. Chem. B 8(45), 10290–10308 (2020)

    Article  CAS  PubMed  Google Scholar 

  21. J. Deng, Q. Lu, Y. Hou, M. Liu, H. Li, Y. Zhang, S. Yao, Nanosensor composed of nitrogen-doped carbon dots and gold nanoparticles for highly selective detection of cysteine with multiple signals. Anal. Chem. 87(4), 2195–2203 (2015)

    Article  CAS  PubMed  Google Scholar 

  22. P. Li, C. Wu, Y. Xu, D. Cheng, Q. Lu, J. Gao, W. Yang, X. Zhu, M. Liu, H. Li, Group IV nanodots: newly emerging properties and application in biomarkers sensing, TrAC Trends in Analytical Chemistry, (2020) 116007.

  23. E.M. Schneider, A. Bärtsch, W.J. Stark, R.N. Grass, Safe One-Pot Synthesis of Fluorescent Carbon Quantum Dots from Lemon Juice for a Hands-On Experience of Nanotechnology. J. Chem. Educ. 96, 540–545 (2019)

    Article  CAS  Google Scholar 

  24. R. Atchudan, T.N.J.I. Edison, S. Perumal, N.C.S. Selvam, Y.R. Lee, Green synthesized multiple fluorescent nitrogen-doped carbon quantum dots as an efficient label-free optical nanoprobe for in vivo live-cell imaging. J. Photochem. Photobiol., A 372, 99–107 (2019)

    Article  CAS  Google Scholar 

  25. N. Murugan, M. Prakash, M. Jayakumar, A. Sundaramurthy, A.K. Sundramoorthy, Green synthesis of fluorescent carbon quantum dots from Eleusine coracana and their application as a fluorescence ‘turn-off’sensor probe for selective detection of Cu2+. Appl. Surf. Sci. 476, 468–480 (2019)

    Article  CAS  Google Scholar 

  26. P.A.N. de Yro, G.M.O. Quaichon, R.A.T. Cruz, C.S. Emolaga, M.C.O. Que, E.R. Magdaluyo Jr, B.A. Basilia, Hydrothermal synthesis of carbon quantum dots from biowaste for bio-imaging, in: AIP Conference Proceedings, AIP Publishing, (2019) 020007.

  27. S. Moradi, K. Sadrjavadi, N. Farhadian, L. Hosseinzadeh, M. Shahlaei, Easy synthesis, characterization and cell cytotoxicity of green nano carbon dots using hydrothermal carbonization of Gum Tragacanth and chitosan bio-polymers for bioimaging. J. Mol. Liq. 259, 284–290 (2018)

    Article  CAS  Google Scholar 

  28. A. Cayuela, M.L. Soriano, S.R. Kennedy, J. Steed, M. Valcárcel, Fluorescent carbon quantum dot hydrogels for direct determination of silver ions. Talanta 151, 100–105 (2016)

    Article  CAS  PubMed  Google Scholar 

  29. W. Bai, H. Zheng, Y. Long, X. Mao, M. Gao, L. Zhang, A carbon dots-based fluorescence turn-on method for DNA determination. Anal. Sci. 27, 243–243 (2011)

    Article  CAS  PubMed  Google Scholar 

  30. P. Ni, H. Dai, Z. Li, Y. Sun, J. Hu, S. Jiang, Y. Wang, Z. Li, Carbon dots based fluorescent sensor for sensitive determination of hydroquinone. Talanta 144, 258–262 (2015)

    Article  CAS  PubMed  Google Scholar 

  31. A. Konwar, N. Gogoi, G. Majumdar, D. Chowdhury, Green chitosan–carbon dots nanocomposite hydrogel film with superior properties. Carbohyd. Polym. 115, 238–245 (2015)

    Article  CAS  Google Scholar 

  32. X.-W. Hua, Y.-W. Bao, H.-Y. Wang, Z. Chen, F.-G. Wu, Bacteria-derived fluorescent carbon dots for microbial live/dead differentiation. Nanoscale 9, 2150–2161 (2017)

    Article  CAS  PubMed  Google Scholar 

  33. S. Mitra, S. Chandra, S.H. Pathan, N. Sikdar, P. Pramanik, A. Goswami, Room temperature and solvothermal green synthesis of self passivated carbon quantum dots. RSC Adv. 3, 3189–3193 (2013)

    Article  CAS  Google Scholar 

  34. Y. Yang, X. Ji, M. Jing, H. Hou, Y. Zhu, L. Fang, X. Yang, Q. Chen, C.E. Banks, Carbon dots supported upon N-doped TiO 2 nanorods applied into sodium and lithium ion batteries. J. Mater. Chem. A 3, 5648–5655 (2015)

    Article  CAS  Google Scholar 

  35. S. Lu, S. Guo, P. Xu, X. Li, Y. Zhao, W. Gu, M. Xue, Hydrothermal synthesis of nitrogen-doped carbon dots with real-time live-cell imaging and blood–brain barrier penetration capabilities. Int. J. Nanomed. 11, 6325 (2016)

    Article  CAS  Google Scholar 

  36. C. Wang, Z. Xu, C. Zhang, Polyethyleneimine-functionalized fluorescent carbon dots: water stability, pH sensing, and cellular imaging. ChemNanoMat 1, 122–127 (2015)

    Article  CAS  Google Scholar 

  37. C. Wang, Z. Xu, H. Cheng, H. Lin, M.G. Humphrey, C. Zhang, A hydrothermal route to water-stable luminescent carbon dots as nanosensors for pH and temperature. Carbon 82, 87–95 (2015)

    Article  CAS  Google Scholar 

  38. Y. Zhou, D. Benetti, X. Tong, L. Jin, Z.M. Wang, D. Ma, H. Zhao, F. Rosei, Colloidal carbon dots based highly stable luminescent solar concentrators. Nano Energy 44, 378–387 (2018)

    Article  CAS  Google Scholar 

  39. J. Thejaswini, B. Gurupadayya, K.K. Ranjith, Quantitative determination of duloxetine HCl in human plasma by GC-FID method. Int. J. Pharm. Pharm. Sci 5, 405–408 (2013)

    Google Scholar 

  40. S. Prabu, S. Shahnawaz, C.D. Kumar, A. Shirwaikar, Spectrofluorimetric method for determination of duloxetine hydrochloride in bulk and pharmaceutical dosage forms. Indian J. Pharm. Sci. 70(4), 502 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. M. Zeeb, H. Farahani, Trace determination of duloxetine in human plasma by a novel ionic liquid-based ultrasound-assisted in situ solvent formation microextraction and high-performance liquid chromatography. Anal. Bioanal. Chem. Res. 5(2), 183–193 (2018)

    CAS  Google Scholar 

  42. P. Hemalatha, M. Ganesh, M.M. Peng, H.T. Jang, Facile colorimetric determination of duloxetine in formulations using methyl orange as ion-pairing agent. Trop. J. Pharm. Res. 12(1), 93–97 (2013)

    CAS  Google Scholar 

  43. A. Musenga, M. Amore, R. Mandrioli, E. Kenndler, L. De Martino, M.A. Raggi, Determination of duloxetine in human plasma by capillary electrophoresis with laser-induced fluorescence detection. J. Chromatogr. B 877(11–12), 1126–1132 (2009)

    Article  CAS  Google Scholar 

  44. M. Zeeb, H. Farahani, Graphene oxide/Fe 3 O 4@ polythionine nanocomposite as an efficient sorbent for magnetic solid-phase extraction followed by high-performance liquid chromatography for the determination of duloxetine in human plasma. Chem. Pap. 72(1), 15–27 (2018)

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by Kermanshah University of Medical Sciences, Kermanshah, Iran.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ali Akbar Saboury, Hossein Derakhshankhah or Behrang Shiri Varnamkhasti.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Darvishi, E., Shekarbeygi, Z., Yousefinezhad, S. et al. Green synthesis of nanocarbon dots using hydrothermal carbonization of lysine amino acid and its application in detection of duloxetine. J IRAN CHEM SOC 18, 2863–2872 (2021). https://doi.org/10.1007/s13738-021-02239-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-021-02239-3

Keywords

Navigation