Skip to main content
Log in

One-pot synthesis of sulfonylhydrazones from sulfonyl chloride, hydrazine hydrate and vinyl azide in water

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

A facile and eco-friendly protocol for the synthesis of sulfonylhydrazones from sulfonyl chlorides, hydrazine hydrate and vinyl azides was developed. The unique advantage of this approach is that desired products can be obtained efficiently in water, which meets the requirements of green chemistry and provides good perspectives for the sustainable production of new drug candidate. Also, this reaction proceeded in moderate to good yields with a wide tolerance of functional groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2

Similar content being viewed by others

References

  1. M.B. Gawande, V.D. Bonifácio, R. Luque, P.S. Branco, R.S. Varma, Benign by design: catalyst-free in-water, on-water green chemical methodologies in organic synthesis. Chem. Soc. Rev. 42, 5522–5551 (2013). https://doi.org/10.1039/C3CS60025D

    Article  CAS  PubMed  Google Scholar 

  2. J.Á. Martín-Illán, D. Rodríguez-San-Miguel, C. Franco, I. Imaz, D. Maspoch, J. Puigmartí-Luis, F. Zamora, Green synthesis of imine-based covalent organic frameworks in water. Chem. Commun. 56, 6704–6707 (2020). https://doi.org/10.1039/D0CC02033H

    Article  Google Scholar 

  3. L.Y. LinY, Y. Zheng, R. Nie, L. Guo, Y. Wu, Green and efficient synthesis of N-sulfenyl sulfoximines in water. ACS Sustain. Chem. Eng. 6, 13644–13649 (2018). https://doi.org/10.1021/acssuschemeng.8b03549

    Article  CAS  Google Scholar 

  4. B. Wang, L. Tang, L. Liu, Y. Li, Y. Yang, Z. Wang, Base-mediated tandem sulfonylation and oximation of alkenes in water. Green Chem. 19, 5794–5799 (2017). https://doi.org/10.1039/C7GC03051G

    Article  CAS  Google Scholar 

  5. V.M. Muzalevskiy, K.V. Belyaeva, B.A. Trofimov, V.G. Nenajdenko, Diastereoselective synthesis of CF 3-oxazinoquinolines in water. Green Chem. 21, 6353–6360 (2019). https://doi.org/10.1039/C9GC03044A

    Article  CAS  Google Scholar 

  6. R.N. Butler, A.G. Coyne, Water: nature’s reaction enforcercomparative effects for organic synthesis “In-Water” and “On-Water.” Chem. Rev. 110, 6302–6337 (2010). https://doi.org/10.1021/cr100162c

    Article  CAS  PubMed  Google Scholar 

  7. S.-T. Hou, N.-Q. Chen, P.-F. Zhang, S. Dai, Heterogeneous viologen catalysts for metal-free and selective oxidations. Green Chem. 21, 1455–1460 (2019). https://doi.org/10.1039/c8gc03772h

    Article  CAS  Google Scholar 

  8. P. Liu, G.-H. Zhang, P.-P. Sun, Transition metal-free decarboxylative alkylation reactions. Org. Biomol. Chem. 14, 10763–10777 (2016). https://doi.org/10.1039/c6ob02101h

    Article  CAS  PubMed  Google Scholar 

  9. R.-K. Wang, L.-Q. Jiang, W.-B. Yi, Metal-free electrophilic trifluoroethylthiolation with NaSO2CH2CF3. J. Org. Chem 83, 7789–7798 (2018). https://doi.org/10.1021/acs.joc.8b00676

    Article  CAS  PubMed  Google Scholar 

  10. A.T. Kelly, A.K. Franz, Metal-free synthesis of 1,3-disiloxanediols and aryl siloxanols. ACS Omega 4, 6295–6300 (2019). https://doi.org/10.1021/acsomega.9b00121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. D. Liu, M.-J. Jiao, X.-Z. Wang, P.-F. Xu, Metal-free visible-light-induced construction of difluoro-dontaining dibenzazepines. Org. Lett. 21, 4745–4749 (2019). https://doi.org/10.1021/acs.orglett.9b01629

    Article  CAS  PubMed  Google Scholar 

  12. X. Liu, L.-M. Dai, Carbon-based metal-free catalysts. Nat. Rev. Mater. 1, 1–12 (2016). https://doi.org/10.1038/natrevmats.2016.64

    Article  CAS  Google Scholar 

  13. W. Li, L. Gao, W. Zhuge, X. Sun, G. Zheng, Catalyst-free synthesis of 3-sulfone nitrile from sulfonyl hydrazides and acrylonitrile in water. Org. Biomol. Chem. 15, 7819–7823 (2017). https://doi.org/10.1039/C7OB01558E

    Article  CAS  PubMed  Google Scholar 

  14. M.-Y. Han, J. Lin, W. Li, W.-Y. Luan, P.-L. Mai, Y. Zhang, Catalyst-free nucleophilic addition reactions of silyl glyoxylates in water. Green Chem. 20, 1228–1232 (2018). https://doi.org/10.1039/C7GC03775A

    Article  CAS  Google Scholar 

  15. T.B. Fernandes, R.A. De Azevedo, R. Yang, S.F. Teixeira, G.H. GoulartTrossini, J.A. MarzagaoBarbuto, A.K. Ferreira, R. Parise-Filho, Arylsulfonylhydrazone induced apoptosis in MDA-MB-231 breast cancer cells. Lett. Drug Des. Discov. 15, 1288–1298 (2018). https://doi.org/10.2174/1570180815666180321161513

    Article  CAS  Google Scholar 

  16. K.N. Oliveira, M.M. Souza, P.C. Sathler, U.O. Magalhães, C.R. Rodrigues, H.C. Castro, P.R. Palm, M. Sarda, P.E. Perotto, S. Cezar, Sulphonamide and sulphonyl-hydrazone cyclic imide derivatives: antinociceptive activity, molecular modeling and in silico ADMET screening. Arch. Pharm. Res. 35, 1713–1722 (2012). https://doi.org/10.1007/s12272-012-1002-1

    Article  CAS  PubMed  Google Scholar 

  17. G. Zapata-Sudo, I.K. da Costa Nunes, J.S.C. Araujo, J.S. da Silva, M.M. Trachez, T.F. da Silva, F.P. da Costa, R.T. Sudo, E.J. Barreiro, L.M. Lima, Synthesis, solubility, plasma stability, and pharmacological evaluation of novel sulfonylhydrazones designed as anti-diabetic agents. Drug Des. Dev. Ther. 10, 2869–2879 (2016). https://doi.org/10.2147/DDDT.S108327

    Article  CAS  Google Scholar 

  18. H. Wang, S.-X. Ren, Z.-Y. He, D.-L. Wang, X.-N. Yan, J.-T. Feng, X. Zhang, Synthesis, antifungal activities and qualitative structure activity relationship of carabronehydrazone derivatives as potential antifungal agents. Int. J. Mol. Sci. 15, 4257–4272 (2014). https://doi.org/10.3390/ijms15034257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. K.N. De Oliveira, P. Costa, J.R. Santin, L. Mazzambani, C. Bürger, C. Mora, R.J. Nunes, M.M. De Souza, Synthesis and antidepressant-like activity evaluation of sulphonamides and sulphonyl-hydrazones. Bioorg. Med. Chem. 19, 4295–4306 (2011). https://doi.org/10.1016/j.bmc.2011.05.056

    Article  CAS  PubMed  Google Scholar 

  20. A. Queen, P. Khan, D. Idrees, A. Azam, M.I. Hassan, Biological evaluation of p-toluene sulphonylhydrazone as carbonic anhydrase IX inhibitors: an approach to fight hypoxia-induced tumors. Int. J. Biol. Macromol. 106, 840–850 (2018). https://doi.org/10.1016/j.ijbiomac.2017.08.082

    Article  CAS  PubMed  Google Scholar 

  21. R.G.D. Oliveira, F.S. Guerra, C.D.S. Mermelstein, P.D. Fernandes, I.T.D.S. Bastos, F.N. Costa, R.C.R. Barroso, F.F. Ferreira, C.A.M. Fraga, Synthesis and pharmacological evaluation of novel isoquinoline N-sulphonylhydrazones designed as ROCK inhibitors. J. Enzym. Inhib. Med. Chem. 33, 1181–1193 (2018). https://doi.org/10.1080/14756366.2018.1490732

    Article  CAS  Google Scholar 

  22. Ü.Ö. Özdemir, A. Altuntaş, A.B. Gündüzalp, F. Arslan, F. Hamurcu, New aromatic/heteroaromatic propanesulfonylhydrazone compounds: Synthesis, physical properties and inhibition studies against carbonic anhydrase II (CAII) enzyme. Spectrochim. Acta A 128, 452–460 (2014). https://doi.org/10.1016/j.saa.2014.02.049

    Article  CAS  Google Scholar 

  23. G. Zapata-Sudo, L.M. Lima, S.L. Pereira, M.M. Trachez, F.P. da Costa, B.J. Souza, C.E.S. Monteiro, N.C. Romeiro, E.D. D’Andrea, R.T. Sudo, Docking, synthesis and anti-diabetic activity of novel sulfonylhydrazone derivatives designed as PPAR-gamma agonists. Curr. Top Med. Chem. 12, 2037–2048 (2012). https://doi.org/10.2174/156802612804910205

    Article  CAS  PubMed  Google Scholar 

  24. J. Smith, H. Shechter, J. Bayless, L. Friedman, Intramolecular processes in carbenic and cationic decomposition of cyclopropanecarboxaldehyde p-tosylhydrazone. J. Am. Chem. Soc. 87, 659–661 (1965). https://doi.org/10.1021/ja01081a052

    Article  CAS  Google Scholar 

  25. A.G. Stern, M.C. Ilao, A. Nickon, Hydrogen migrations in a constrained cyclohexylidene. Hax/Heq shift ratios in thermal and photic Bamford-Stevens reactions. Tetrahedron 49, 8107–8118 (1993). https://doi.org/10.1016/S0040-4020(01)88030-3

    Article  CAS  Google Scholar 

  26. V.V. Khripach, V.N. Zhabinskii, A.I. Kotyatkina, G.P. Fando, A.S. Lyakhov, A.A. Govorova, J. van der Louw, M.B. Groen, A. de Groot, An unusul Bamford-Stevens reaction of 17-toluenesulfonylhydrazono-3β-acetoxy-14α-hydroxyandrost-5-ene. Mendeleev Commun. 11, 144–145 (2001). https://doi.org/10.1070/MC2001v011n04ABEH001448

    Article  CAS  Google Scholar 

  27. F. Jin, Y. Xu, Y. Ma, Facile conversion of trifluoroacetyltriphenylsilane 2, 4, 6-triisepropylbenzenesulfonylhydrazone to 2, 2, 2-trifluorodiazoethane. An unusual example of the bamford-stevens reaction. Tetrahedron let. 33, 6161–6164 (1992). https://doi.org/10.1002/chin.199310203

    Article  CAS  Google Scholar 

  28. S. Jana, F. Li, C. Empel, D. Verspeek, P. Aseeva, R.M. Koenigs, Stoichiometric photochemical carbenetransfer by Bamford-Stevensreaction. Chem. Eur. J. 26, 2586–2591 (2020). https://doi.org/10.1002/chem.201904994

    Article  CAS  PubMed  Google Scholar 

  29. J. Powell, M. Whiting, The decomposition of sulphonyl-hydrazone salts-I: mechanism and stereochemistry. Tetrahedron 7, 305–310 (1959). https://doi.org/10.1016/S0040-4020(01)93200-4

    Article  CAS  Google Scholar 

  30. W.J. Kerr, A.J. Morrison, M. Pazicky, T. Weber, Modified Shapiro reactions with bismesitylmagnesium as an efficient base reagent. Org. lett. 14, 2250–2253 (2012). https://doi.org/10.1002/chin.201234048

    Article  CAS  PubMed  Google Scholar 

  31. M.-H. Yang, S.S. Matikonda, R.A. Altman, Preparation of fluoroalkenes via the shapiro reaction: direct access to fluorinated peptidomimetics. Org. lett. 15, 3894–3897 (2013). https://doi.org/10.1021/ol401637n

    Article  CAS  PubMed  Google Scholar 

  32. Q. Xiao, Y. Xia, H. Li, Y. Zhang, J. Wang, Coupling of N-tosylhydrazones with terminal alkynes catalyzed by copper (I): synthesis of trisubstituted allenes. Angew. Chem. Int. Edit 50, 1114–1117 (2011). https://doi.org/10.1002/anie.201005741

    Article  CAS  Google Scholar 

  33. H. Jiang, L. He, X. Li, H. Chen, W. Wu, W. Fu, Facile synthesis of dibranched conjugated dienes via palladium-catalyzed oxidative coupling of N-tosylhydrazones. Chem. Commun. 49, 9218–9220 (2013). https://doi.org/10.1021/ol401637n

    Article  CAS  Google Scholar 

  34. H. Tan, I. Houpis, R. Liu, Y. Wang, Z. Chen, Olefin preparation via palladium-catalyzed oxidative de-azotative and de-sulfitativeinternal cross-coupling of sulfonylhydrazones. Org. let. 17, 3548–3551 (2015). https://doi.org/10.1002/chin.201542098

    Article  CAS  Google Scholar 

  35. D.M. Allwood, D.C. Blakemore, A.D. Brown, S.V. Ley, Metal-free coupling of saturated heterocyclic sulfonylhydrazones with boronic acids. J. Org. Chem. 79, 328–338 (2014). https://doi.org/10.1021/jo402526z

    Article  CAS  PubMed  Google Scholar 

  36. Y. Liu, P. Liu, Y. Liu, Y. Wei, B. Dai, Metal-free reductive coupling of biphenyl tosylhydrazones with phenols or benzyl alcohols. Lett. Org. Chem. 14, 748–757 (2017). https://doi.org/10.2174/1570178614666170608084019

    Article  CAS  Google Scholar 

  37. S. Liu, M. Fang, D. Yin, Y. Wang, L. Liu, X. Li, G. Che, Synthesis of 1-aryl-benzocycloalkane derivatives via one-pot two-step reaction of benzocyclonone, tosylhydrazide, and arylboronic acid. Synth. Commun. 49, 942–949 (2019). https://doi.org/10.1002/chin.201542098

    Article  CAS  Google Scholar 

  38. T. Naret, T. Bzeih, P. Retailleau, M. Alami, A. Hamze, One-pot selective functionalization of nitrogen-containing heterocycles with N-tosylhydrazones and amines. Adv. Synth. Catal. 360, 584–594 (2018). https://doi.org/10.1002/adsc.201701374

    Article  CAS  Google Scholar 

  39. D.-F. Jiang, J.-Y. Hu, W.-J. Hao, S.-L. Wang, S.-J. Tu, B. Jiang, Tunable Cu (I)-catalyzed site-selective dehydrogenative amination of β, γ-unsaturated hydrazones for divergent synthesis of pyrazol-4-ones and 1,6-dihydropyradazines. Org. Chem. Front. 5, 189–196 (2018). https://doi.org/10.1039/C7QO00743D

    Article  CAS  Google Scholar 

  40. Y. Huang, P. Zhou, W. Wu, H. Jiang, Selective construction of 2-substituted benzothiazoles from o-iodoanilinederivatives S8 and N-tosylhydrazones. J. Org. Chem. 83, 2460–2466 (2018). https://doi.org/10.1021/acs.joc.7b03118

    Article  CAS  PubMed  Google Scholar 

  41. C. Wang, X. Geng, P. Zhao, Y. Zhou, Y.-D. Wu, Y.-F. Cui, A.-X. Wu, I2/CuCl2-promoted one-pot three-component synthesis of aliphatic or aromatic substituted 1,2,3-thiadiazoles. Chem. Commun. 55, 8134–8137 (2019). https://doi.org/10.1039/C9CC04254G

    Article  CAS  Google Scholar 

  42. S.-K. Mo, Q.-H. Teng, Y.-M. Pan, H.-T. Tang, Metal-and oxidant-free electrosynthesis of 1, 2, 3-thiadiazoles from element sulfur and N-tosylhydrazones. Adv. Synth. Catal. 361, 1756–1760 (2019). https://doi.org/10.1002/adsc.201801700

    Article  CAS  Google Scholar 

  43. J. Chen, Y. Jiang, J.-T. Yu, J. Cheng, TBAI-catalyzed reaction between N-tosylhydrazones and sulfur: a procedure toward 1,2,3-thiadiazole. J. Org. Chem. 81, 271–275 (2016). https://doi.org/10.1021/acs.joc.5b02280

    Article  CAS  PubMed  Google Scholar 

  44. Z. Chen, Q. Yan, H. Yi, Z. Liu, A. Lei, Y. Zhang, Efficient synthesis of 1, 2, 3-triazoles by copper-mediated C-N and N-N bond formation starting from n-tosylhydrazones and amines. Chem. Eur. J. 20, 13692–13694 (2014). https://doi.org/10.1002/chem.201403515

    Article  CAS  PubMed  Google Scholar 

  45. A. Ragupathi, A. Sagadevan, V.P. Charpe, C.-C. Lin, J.-R. Hwu, K.C. Hwang, Visible-light-driven copper-catalyzed aerobic oxidative cascade cyclization of N-tosylhydrazones and terminal alkynes: regioselective synthesis of 3-arylcoumarins. Chem. Commun. 55, 5151–5154 (2019). https://doi.org/10.1039/C9CC01801H

    Article  CAS  Google Scholar 

  46. Z.-G. Luo, P. Liu, Y.-Y. Fang, X.-M. Xu, C.-T. Feng, Z. Li, X.-M. Zhang, J. He, Cs2CO3-mediated decomposition of N-tosylhydrazones for the synthesis of azines under mild conditions. Res. Chem. Intermediat. 43, 1139–1148 (2017). https://doi.org/10.1007/s11164-016-2688-3

    Article  CAS  Google Scholar 

  47. A. Kamal, M. Arifuddin, N. VenugopalRao, Facile transformation of N, N-dimethylhydrazones and tosylhydrazones to ketones with dimethyl sulfate and potassium carbonate. Synth. Commun. 28, 3927–3931 (1998). https://doi.org/10.1080/00397919808004950

    Article  CAS  Google Scholar 

  48. D.-J. Chen, D.-P. Cheng, Z.-C. Chen, Hypervalent iodine in synthesis. 61. Regeneration of carbonyl function from carbonyl derivatives using polymer-supported phenyliodinebis (trifluoroacetate). Synth. Commun. 31, 3847–3850 (2001). https://doi.org/10.1081/SCC-100108235

    Article  CAS  Google Scholar 

  49. A.K. Yadav, V.P. Srivastava, L.D.S. Yadav, An easy access to fluoroalkanes by deoxygenative hydrofluorination of carbonyl compounds via their tosylhydrazones. Chem. Commun. 49, 2154–2156 (2013). https://doi.org/10.1039/C3CC00122A

    Article  CAS  Google Scholar 

  50. Z. Liu, K.R. Babu, F. Wang, Y. Yang, X. Bi, Influence of sulfonyl substituents on the decomposition of N-sulfonylhydrazones at room temperature. Org. Chem. Front. 6, 121–124 (2019). https://doi.org/10.1039/C8QO00802G

    Article  CAS  Google Scholar 

  51. X. Li, X. Liu, H. Chen, W. Wu, C. Qi, H. Jiang, Copper-catalyzed aerobic oxidative transformation of ketone-derived N-tosylhydrazones: an entry to alkynes. Angew. Chem. Int. Edn. 126, 14713–14717 (2014). https://doi.org/10.1002/anie.201405058

    Article  CAS  Google Scholar 

  52. Z. Luo, Y. Fang, Y. Zhao, X. Xu, C. Feng, Z. Li, X. Zhang, J. He, PhI (OAc)2-mediated decomposition of N-arylsulfonylhydrazones: metal-free synthesis of (E)-vinyl sulfones. Tetrahedron Lett. 57, 4105–4108 (2016). https://doi.org/10.1016/j.tetlet.2016.07.099

    Article  CAS  Google Scholar 

  53. J.-L. Zhao, S.-H. Guo, J. Qiu, X.-F. Gou, C.-W. Hua, B. Chen, Iron (III) phthalocyanine-chloride-catalyzed synthesis of sulfones from sulfonylhydrazones. Tetrahedron Lett. 57, 2375–2378 (2016). https://doi.org/10.1016/j.tetlet.2016.04.044

    Article  CAS  Google Scholar 

  54. Á. García-Muñoz, A.I. Ortega-Arizmendi, M.A. García-Carrillo, E. Diaz, N. Gonzalez-Rivas, E. Cuevas-Yañez, Direct, metal-free synthesis of benzyl alcohols and deuterated benzyl alcohols from p-toluenesulfonylhydrazones using water as solvent. Synthesis 44, 2237–2242 (2012). https://doi.org/10.1055/s-0031-1290372

    Article  CAS  Google Scholar 

  55. Q. Ding, B. Cao, J. Yuan, X. Liu, Y. Peng, Synthesis of thioethers via metal-free reductive coupling of tosylhydrazones with thiols. Org. Biomol. Chem. 9, 748–751 (2011). https://doi.org/10.1039/C0OB00639D

    Article  CAS  PubMed  Google Scholar 

  56. R. Grandi, A. Marchesini, U.M. Pagnoni, R. Trave, Conversion of conjugated p-tosylhydrazones to the corresponding ethers by sodium borohydride, sodium alkoxide or potassium carbonate in alcohol solvents. J. Org. Chem. 41, 1755–1758 (1976). https://doi.org/10.1021/jo00872a019

    Article  CAS  Google Scholar 

  57. A.S. Tsai, J.M. Curto, B.N. Rocke, A.-M.R. Dechert-Schmitt, G.K. Ingle, V. Mascitti, One-step synthesis of sulfonamides from N-tosylhydrazones. Org. lett. 18, 508–511 (2016). https://doi.org/10.1021/acs.orglett.5b03545

    Article  CAS  PubMed  Google Scholar 

  58. S. Sun, J.-T. Yu, Y. Jiang, J. Cheng, Cs2CO3-promoted carboxylation of N-tosylhydrazones with carbon dioxide toward α-Arylacrylicacids. J. Org. Chem. 80, 2855–2860 (2015). https://doi.org/10.1021/jo502908v

    Article  CAS  PubMed  Google Scholar 

  59. S. Goyal, M. Budhiraja, D. Mandal, V. Tyagi, Experimental and computational insights into the water-mediated decomposition of N-sulfonylhydrazones: a catalyst-free synthesis of γ-keto/nitrile sulfones. Asian J. Org. Chem. 9, 251–258 (2020). https://doi.org/10.1002/ajoc.201900728

    Article  CAS  Google Scholar 

  60. J. Gu, Z. Fang, Z. Yang, X. Li, N. Zhu, L. Wan, P. Wei, K. Guo, A two-step continuous flow synthesis of 1, 4-disubstituted 1, 2, 3-triazoles under metal-and azide-free conditions. RSC Adv. 6, 89073–89079 (2016). https://doi.org/10.1039/C6RA19022G

    Article  CAS  Google Scholar 

  61. S. Ito, A. Kakehi, T. Miwa, Reaction of α-bromoacetophenone phenylsulfonylhydrazones. A new synthetic route to 2-arylimidazoisoquinolines and-quinolines. Heterocycles 32, 2372–2380 (1991). https://doi.org/10.3987/COM-91-5851

    Article  Google Scholar 

  62. A.K. Yadav, V.P. Srivastava, L.D.S. Yadav, An easy access to fluoroalkanes by deoxygenative hydrofluorination of carbonyl compounds via their tosylhydrazones. Chem. Commun. 49, 2154–2156 (2013). https://doi.org/10.1039/c3cc00122a

    Article  CAS  Google Scholar 

  63. V.P. Miller, D.-Y. Yang, T.M. Weigel, O. Han, H.-W. Liu, Studies of the mechanistic diversity of sodium cyanoborohydride reduction of tosylhydrazones. J. Org. Chem. 54, 4175–4188 (1989). https://doi.org/10.1021/jo00278a035

    Article  CAS  Google Scholar 

  64. J. Wang, S. Zha, K. Chen, J. Zhu, Cp* Co (III)-catalyzed, N-N bond-based redox-neutral synthesis of isoquinolines. Org. Chem. Front. 3, 1281–1285 (2016). https://doi.org/10.1039/C6QO00367B

    Article  CAS  Google Scholar 

  65. X.-W. Feng, J. Wang, J. Zhang, J. Yang, N. Wang, X.-Q. Yu, Copper-catalyzed nitrogen loss of Sulfonylhydrazones: a reductive strategy for the synthesis of sulfones from carbonyl compounds. Org. Lett. 12, 4408–4411 (2010). https://doi.org/10.1021/ol101955x

    Article  CAS  PubMed  Google Scholar 

  66. N. Karaman, E.E. Oruç-Emre, Y. Sıcak, B. Çatıkkaş, A. Karaküçük-İyidoğan, M. Öztürk, Microwave-assisted synthesis of new sulfonyl hydrazones, screening of biological activities and investigation of structure-activity relationship. Med. Chem. Res. 25, 1590–1607 (2016). https://doi.org/10.1007/s00044-016-1592-0

    Article  CAS  Google Scholar 

  67. P. Nun, C. Martin, J. Martinez, F. Lamaty, Solvent-free synthesis of hydrazones and their subsequent N-alkylation in a Ball-mill. Tetrahedron 67, 8187–8194 (2011). https://doi.org/10.1016/j.tet.2011.07.056

    Article  CAS  Google Scholar 

  68. Q. Yang, W. Hao, Y. He, Q. Zhang, X. Yu, Y. Hua, A green synthesis and antibacterial activity of N-arylsulfonylhydrazone compounds. Heterocycl. Commun. 25, 152–156 (2019). https://doi.org/10.1515/hc-2019-0023

    Article  CAS  Google Scholar 

  69. M.R. Cunha, M.T. Tavares, C.F. Carvalho, N.A. Silva, A.D. Souza, G.J. Pereira, F.B.F. Ferreira, R. Parise-Filho, Environmentally safe condition for the synthesis of aryl and alkyl sulfonyl hydrazones via one-pot reaction. ACS Sustain. Chem. Eng. 4, 1899–1905 (2016). https://doi.org/10.1021/acssuschemeng.6b00193

    Article  CAS  Google Scholar 

  70. O.S. Morozov, P.S. Gribanov, A.F. Asachenko, P.V. Dorovatovskii, V.N. Khrustalev, V.B. Rybakov, M.S. Nechaev, Hydrohydrazination of arylalkynescatalyzed by an expanded ring N-heterocyclic carbene (er-NHC) gold complex under solvent-free conditions. Adv. Synth. Catal. 358, 1463–1468 (2016). https://doi.org/10.1002/chin.201637045

    Article  CAS  Google Scholar 

  71. Y. Ding, H. Li, Y. Meng, T. Zhang, J. Li, Q.-Y. Chen, C. Zhu, Directs ynthesis of hydrazones by visible light mediated aerobic oxidative cleavage of the C=C bond. Org. Chem. Front. 4, 1611–1614 (2017). https://doi.org/10.1039/C7QO00276A

    Article  CAS  Google Scholar 

  72. X. Zhu, S. Chiba, Construction of 1-pyrroline skeletons by Lewis acid-mediated conjugate addition of vinyl azides. Chem. Commun. 52, 2473–2476 (2016). https://doi.org/10.1039/C5CC10299E

    Article  CAS  Google Scholar 

  73. Y.F. Wang, M. Hu, H. Hayashi, B. Xing, S. Chiba, Linking of alcohols with vinyl azides. Org. let. 18, 992–995 (2016). https://doi.org/10.1021/acs.orglett.6b00116

    Article  CAS  Google Scholar 

  74. A. Benjamin, J. Belinka, H. Alfred, Facile conversion of vinyl azides to ketones or aldehydes. J. Org. Chem. 44(25), 4712–4713 (1979). https://doi.org/10.1021/jo00393a056

    Article  Google Scholar 

  75. X. Zhang, B. Lu, X. Wang, J. Zhao, Q. Cai, Deoximation reaction in room temperature ionic liquids under mild conditions. Chin. J. Chem. 29, 1846–1850 (2011). https://doi.org/10.1002/cjoc.201100041

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support from Zhejiang Provincial Natural Science foundation of China (No. LQ16H090004) and Research Project of Shaoxing University (No. 2017LG1003). We also thank Anna Kerkula for English language editing.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yaohong Zhang or Runpu Shen.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, M., Wang, H., Ren, X. et al. One-pot synthesis of sulfonylhydrazones from sulfonyl chloride, hydrazine hydrate and vinyl azide in water. J IRAN CHEM SOC 18, 2713–2722 (2021). https://doi.org/10.1007/s13738-021-02226-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-021-02226-8

Keywords

Navigation