Skip to main content
Log in

Effect of sacrificial agents on the photoelectrochemical properties of titanium dioxide co-doped with tungsten and manganese as new visible light active

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

By using one-step anodizing, W–Mn–TiO2 nanotubes (W–Mn–TNTs) were synthesized in different ratios of two metals. The surface morphology and structure of the W–Mn–TNTs samples were characterized by FE-SEM, XRD, EDAX-mapping, and the optical features of the samples were studied by UV–Vis. The photoelectrochemical behavior of the samples was investigated by linear sweep voltammetry, chronoamperometry, and open-circuit potential. The obtained results showed the new doped synthesized samples have better photoelectrochemical properties compared to the bare TiO2. The K2 sample (synthesized in anodizing solution containing 9 mM Na2O4W and 3 mM KMnO4) showing the best result compared to the others, was examined in the presence of different alcohols as sacrificial agents in photoelectrochemical cells water splitting. The glycerol demonstrated a better result than the rest samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972)

    CAS  PubMed  Google Scholar 

  2. M.M. Momeni, Y. Ghayeb, M. Mahvari, Study of photoelectrochemical water splitting using films based on deposited TiO2 nanotubes. Appl. Phys. A Mater. 124, 586–596 (2018)

    Article  Google Scholar 

  3. M.M. Momeni, Y. Ghayeb, F. Mohammadi, Solar water splitting for hydrogen production with Fe2O3 nanotubes prepared by anodizing method: effect of anodizing time on performance of Fe2O3 nanotube arrays. J. Mater. Sci. Mater. Electron. 26, 685–692 (2015)

    Article  CAS  Google Scholar 

  4. Q. Zhao, Q. Wang, Z. Liu, L. Qiu, X. Tian, S. Zhang, S. Gao, Fabrication and photoelectrochemical performance of Ag/AgBr sensitized TiO2 nanotube arrays for environmental and energy applications. Sep. Purif. Technol. 209, 782–788 (2019)

    Article  CAS  Google Scholar 

  5. J. Dong, J. Huang, A. Wang, G.V. Biesold-McGee, X. Zhang, S. Gao, S. Wang, Y. Lai, Z. Lin, Vertically-aligned Pt-decorated MoS2 nanosheets coated on TiO2 nanotube arrays enable high-efficiency solar-light energy utilization for photocatalysis and self-cleaning SERS devices. Nano Energy 71, 104579 (2020)

    Article  CAS  Google Scholar 

  6. K. Kočí, L. Obalová, Z. Lacný, Photocatalytic reduction of CO2 over TiO2 based catalysts. Chem. Pap. 62, 1–9 (2008)

    Article  Google Scholar 

  7. M.M. Momeni, M. Mahvari, Y. Ghayeb, Photoelectrochemical properties of iron-cobalt WTiO2 nanotube photoanodes for water splitting and photocathodic protection of stainless steel. J. Electroanal. Chem. 832, 7–23 (2019)

    Article  CAS  Google Scholar 

  8. C. Wang, Z. Chen, H. Jin, C. Cao, J. Li, Z. Mi, Enhancing visible-light photoelectrochemical water splitting through transition-metal doped TiO2 nanorod arrays. J. Mater. Chem. A 2, 17820–17827 (2014)

    Article  CAS  Google Scholar 

  9. H. Yoo, M. Kim, Y.T. Kim, K. Lee, J. Choi, Catalyst-doped anodic TiO2 nanotubes: binder-free electrodes for (photo) electrochemical reactions. Catalysts 8, 555 (2018)

    Article  Google Scholar 

  10. Effects on Photobleaching Kinetics and Mechanism, Tungsten-doped TiO2 vs pure TiO2 photocatalysts. J. Phys. Chem. C 112, 1094–1100 (2008)

    Article  Google Scholar 

  11. I.S. Cho, C.H. Lee, Y. Feng, M. Logar, P.M. Rao, L. Cai, D.R. Kim, R. Sinclair, X. Zheng, Codoping titanium dioxide nanowires with tungsten and carbon for enhanced photoelectrochemical performance. Nat. Commun. 4, 1723 (2013)

    Article  Google Scholar 

  12. Z. Xu, C. Li, N. Fu, W. Li, G. Zhang, Facile synthesis of Mn-doped TiO2 nanotubes with enhanced visible light photocatalytic activity. J. Appl. Electrochem. 48, 11971203 (2018)

    Google Scholar 

  13. T. Mohammadi, Y. Ghayeb, T. Sharifi, M.M. Momeni, RuO2 photodeposited on W-doped and Cr-doped TiO2 nanotubes with enhanced photoelectrochemical water splitting and capacitor properties. New J. Chem. 44, 2339–2349 (2020)

    Article  CAS  Google Scholar 

  14. S. Li, J. Huang, X. Ning, Y. Chen, Q. Shi, First-principles study of Mn-S codoped anatase TiO2. Mater. Res. Express 5, 045005 (2018)

    Article  Google Scholar 

  15. M. Li, J. Zhang, Y. Zhang, First-principles calculation of compensated (2 N, W) codoping impacts on band gap engineering in anatase TiO2. Chem. Phys. Lett. 527, 63–66 (2012)

    Article  CAS  Google Scholar 

  16. L. Jia, C. Wu, S. Han, N. Yao, Y. Li, Z. Li, B. Chi, J. Pu, L. Jian, Theoretical study on the electronic and optical properties of (N, Fe)-codoped anatase TiO2 photocatalyst. J. Alloy. Compd. 509, 6067–6071 (2011)

    Article  CAS  Google Scholar 

  17. Y. Hu, X. Zhang, C.H. Wei, Synthesis of Mn-N-codoped TiO2 photocatalyst and its photocatalytic reactivity under visible light irradiation. Mater. Sci. Forum 620, 683–686 (2009)

    Article  Google Scholar 

  18. M.Z. Lin, H. Chen, W.F. Chen, A. Nakaruk, P. Koshy, C.C. Sorrell, Effect of single-cation doping and codoping with Mn and Fe on the photocatalytic performance of TiO2 thin films. Int. J. Hydrogen Energy 36, 21500–21511 (2014)

    Article  Google Scholar 

  19. M. Khan, P. Jiang, J. Li, W. Cao, Enhanced photoelectrochemical properties of TiO2 by codoping with tungsten and silver. J. Appl. Phys. 115, 153103 (2014)

    Article  Google Scholar 

  20. B. Kaleji, Influence of co-doping of Sn/W on the structural and photocatalytic activity of TiO2 nanoparticles for MB degradation. Opt. Quant. Electron. 47, 2075–2086 (2015)

    Article  Google Scholar 

  21. Z. Xiong, Z. Lei, S. Ma, X. Chen, B. Gong, Y. Zhao, J. Zhang, C. Zheng, J.C.S. Wu, Photocatalytic CO2 reduction over V and W codoped TiO2 catalyst in an internal-illuminated honeycomb photoreactor under simulated sunlight irradiation. Appl. Catal. B Environ. 219, 412–424 (2017)

    Article  CAS  Google Scholar 

  22. M.M. Momeni, Y. Ghayeb, F. Ezati, Investigation of the morphology, structural, optical, and photoelectrochemical properties of WO3–Fe2O3/CrTiO2 thin-film photoanodes for water splitting. Appl. Phys. A Mater. 126, 303 (2020)

    Article  CAS  Google Scholar 

  23. M.M. Momeni, M. Hakimian, A. Kazempour, Preparation and characterization of manganese-TiO2 nanocomposites for solar water splitting. Surf. Eng. 32, 514–519 (2016)

    Article  CAS  Google Scholar 

  24. X.L. Tong, P. Yang, Y.W. Wang, Y. Qin, X.Y. Guo, Enhanced photoelectrochemical water splitting performance of TiO2 nanotube arrays coated with an ultrathin nitrogen-doped carbon film by molecular layer deposition. Nanoscale 6, 6692–6700 (2014)

    Article  CAS  Google Scholar 

  25. Q. Liu, D.Y. Ding, C.Q. Ning, X.W. Wang, Reduced N/Ni-doped TiO2 nanotubes photoanodes for photoelectrochemical water splitting. RSC Adv. 5, 95478–95487 (2015)

    Article  CAS  Google Scholar 

  26. W. Krengvirat, S. Sreekantan, A.F.M. Noor, G. Kawamura, H. Muto, A. Matsuda, Single-step growth of carbon and potassium-embedded TiO2 nanotube arrays for efficient photoelectrochemical hydrogen generation. Electrochim. Acta 89, 585–593 (2013)

    Article  CAS  Google Scholar 

  27. Z. Wu, Y.F. Su, J.D. Yu, W. Xiao, L. Sun, C.J. Lin, Enhanced photoelectrocatalytic hydrogen production activity of SrTiO3–TiO2 hetero-nanoparticle modified TiO2 nanotube arrays. Int. J. Hydrogen Energy 40, 9704–9712 (2015)

    Article  CAS  Google Scholar 

  28. H.Y. Wang, W. Zhu, B.H. Chong, K. Qin, Improvement of photocatalytic hydrogen generation from CdSe/CdS/TiO2 nanotube-array coaxial heterogeneous structure. Int. J. Hydrogen Energy 39, 90–99 (2014)

    Article  Google Scholar 

  29. J. Luo, D.L. Li, Y. Yang, H.Q. Liu, J.Y. Chen, H.Y. Wang, Preparation of Au/reduced graphene oxide/hydrogenated TiO2 nanotube arrays ternary composites for visible-light-driven photoelectrochemical water splitting. J. Alloys Compd. 661, 380–388 (2016)

    Article  CAS  Google Scholar 

  30. H.L. Chen, K.F. Chen, S.W. Lai, Z. Dang, Y.P. Peng, Photoelectrochemical oxidation of azo dye and generation of hydrogen via CN co-doped TiO2 nanotube arrays. Sep. Purif. Technol. 146, 143–153 (2015)

    Article  CAS  Google Scholar 

  31. M.M. Momeni, Y. Ghayeb, F. Ezati, Iron-tungsten/titania nanotube films for photoelectrochemical water splitting. Surf. Eng. 36, 6–12 (2020)

    Article  CAS  Google Scholar 

  32. L. Clarizia, D. Spasiano, I.D. Somma, R. Marotta, R. Andreozzi, D.D. Dionysiou, Copper modified-TiO2 catalysts for hydrogen generation through photoreforming of organics: a short review. Int. J. Hydrogen Energy 39, 16812–16831 (2014)

    Article  CAS  Google Scholar 

  33. J.J. Velázquez, R. Fernández-González, L. Díaz, E. Pulido Melián, V.D. Rodríguez, P. Núñez, Effect of reaction temperature and sacrificial agent on the photocatalytic H2-production of Pt-TiO2. J. Alloy. Compd. 721, 405–410 (2017)

    Article  Google Scholar 

  34. C.R. López, E.P. Melián, J.A. Ortega Méndez, D.E. Santiago, J.M. Doña Rodríguez, O. González Díaz, Comparative study of alcohols as sacrificial agents in H2 production by heterogeneous photocatalysis using Pt/TiO2 catalysts. J. Photochem. Photobiol., A 312, 45–54 (2015)

    Article  Google Scholar 

  35. M.M. Momeni, Y. Ghayeb, N. Moosavi, Preparation of Ni-Pt/Fe-TiO2 nanotube films for photoelectrochemical cathodic protection of 403 stainless steel. Nanotechnology 29, 425701 (2018)

    Article  Google Scholar 

  36. D.C. Valentin, D. Fittipaldi, Hole scavenging by organic adsorbates on the TiO2 surface: a DFT model study. J. Phys. Chem. Lett. 4, 1901–1906 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohamad Mohsen Momeni or Hossein Farrokhpour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khansari-Zadeh, S.H., Momeni, M.M. & Farrokhpour, H. Effect of sacrificial agents on the photoelectrochemical properties of titanium dioxide co-doped with tungsten and manganese as new visible light active. J IRAN CHEM SOC 17, 3317–3326 (2020). https://doi.org/10.1007/s13738-020-01986-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-020-01986-z

Keywords

Navigation