Skip to main content

Advertisement

Log in

Photocatalytic oxidation of benzyl alcohol and the photoelectrochemical water splitting of visible light-activated TiO2 nanostructures prepared by one-step titanium anodization

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Doped TiO2 nanostructures have been prepared by one-step anodization of titanium in an ethylene glycol-based electrolyte with different concentrations of potassium hexacyanocobaltate and their catalytic activity in photocatalytic oxidation of benzyl alcohol to benzaldehyde, and photoelectrochemical water splitting under visible light has been investigated in this work. Field emission scanning electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, X-ray diffraction, energy-dispersive X-ray spectroscopy and UV–visible techniques have been used to determine the effect of the concentration of the doping agent on the morphology, structure and optical properties of doped TiO2 thin films. Doped TiO2 nanostructures show significant morphological differences in comparison with commercial bare TiO2 nanotube samples, based on SEM analysis. Different electrochemical methods have been used to study the effect of the concentration of the doping agents on the photoelectrocatalytic activity of the samples. The as-anodized doped TiO2 electrodes were observed to show higher photocatalytic activity compared with the bare TiO2 due to the high absorption of visible light and reduction in the recombination of photogenerated charges. Very high surface area, good photocatalytic performance, moderate conversion (about 42%) and high selectivity ( > 99%) for oxidation of benzyl alcohol to benzaldehyde at ambient temperature under visible light illumination in acetonitrile solvent were shown by the doped TiO2 nanoporous sample anodized in electrolyte containing 0.015 M potassium hexacyanocobaltate (sample CT15). Finally, the photoelectrochemical water splitting efficiency of the samples prepared has also been investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S.P. Samudrala, S. Kandasamy, S. Bhattacharya, One-pot synthesis of bio-fuel additives from glycerol and benzyl alcohol: mesoporous MCM-41 supported iron (III) chloride as a highly efficient tandem catalyst. Renew. Energ. 156, 883–892 (2020)

    Article  Google Scholar 

  2. C.A. Akinnawo, N. Bingwa, R. Meijboom, Tailoring the surface properties of meso-CeO2 for selective oxidation of benzyl alcohol. Catal. Commun. 145, 106115 (2020)

    Article  Google Scholar 

  3. W.S. Putro, T. Hara, N. Ichikuni, S. Shimazu, One-pot synthesis of aniline N-alkylation from benzyl alcohol over Cu-Fe catalyst. Appl. Catal. A Gen. 602, 117519 (2020)

    Article  Google Scholar 

  4. V.R. Choudhary, D.K. Dumbre, Magnesium oxide supported nano-gold: a highly active catalyst for solvent-free oxidation of benzyl alcohol to benzaldehyde by TBHP. Catal. Commun. 10, 1738–1742 (2009)

    Article  Google Scholar 

  5. C. Zhao, J. Wu, L. Yang, G. Fan, F. Li, In situ growth route to fabricate ternary Co-Ni-Al mixed-metal oxide film as a promising structured catalyst for the oxidation of benzyl alcohol. Ind. Eng. Chem. Res. 56, 4237–4244 (2017)

    Article  Google Scholar 

  6. M. Mohammadi, H. Hadadzadeh, M. Kaikhosravi, H. Farrokhpour, J. Shakeri, Selective photocatalytic oxidation of benzyl alcohol at ambient conditions using spray-dried g-C3N4/TiO2 Granules. Mol. Catal. 490, 110927 (2020)

    Article  Google Scholar 

  7. S. Higashimoto, N. Kitao, N. Yoshida, T. Sakura, M. Azuma, H. Ohue, Y. Sakata, Selective photocatalytic oxidation of benzyl alcohol and its derivatives into corresponding aldehydes by molecular oxygen on titanium dioxide under visible light irradiation. J. Catal. 266, 279–285 (2009)

    Article  Google Scholar 

  8. C.J. Li, G.R. Xu, B. Zhang, J.R. Gong, High selectivity in visible-light-driven partial photocatalytic oxidation of benzyl alcohol into benzaldehyde over single-crystalline rutile TiO2 nanorods. Appl. Catal. B Environ. 115, 201–208 (2012)

    Article  Google Scholar 

  9. J. Diniz, C.D. Nunes, O.C. Monteiro, Novel approach to synthesise MoO3-TiO2 nanocomposites for the photo-assisted oxidation of benzyl alcohol to benzaldehyde. Inorg. Chem. Commun. 119, 108099 (2020)

    Article  Google Scholar 

  10. S. Yurdakal, G. Palmisano, V. Loddo, V. Augugliaro, L. Palmisano, Nanostructured rutile TiO2 for selective photocatalytic oxidation of aromatic alcohols to aldehydes in water. J. Am. Chem. Soc. 130, 1568 (2008)

    Article  Google Scholar 

  11. G. Palmisano, S. Yurdakal, V. Augugliaro, V. Loddo, L. Palmisano, Photocatalytic selective oxidation of 4-methoxybenzyl alcohol to aldehyde in aqueous suspension of home-prepared titanium dioxide catalyst. Adv. Synth. Catal. 349, 964–970 (2007)

    Article  Google Scholar 

  12. X. Pan, N. Zhang, X. Fu, Y.J. Xu, Selective oxidation of benzyl alcohol over TiO2 nanosheets with exposed 0 0 1 facets: catalyst deactivation and regeneration. Appl. Catal. A Gen. 453, 181–187 (2013)

    Article  Google Scholar 

  13. X.F. Zhang, Z. Wang, Y. Zhong, J. Qiu, X. Zhang, Y. Gao, X. Gu, J. Yao, TiO2 nanorods loaded with Au single bond Pt alloy nanoparticles for the photocatalytic oxidation of benzyl alcohol. J. Phys. Chem. Solids 126, 27–32 (2019)

    Article  ADS  Google Scholar 

  14. P. Roy, S. Berger, P. Schmuki, TiO2 nanotubes: synthesis and applications. Angew. Chem. Int. Ed. 50, 2904–2939 (2011)

    Article  Google Scholar 

  15. M. Ge, Q. Li, C. Cao, J. Huang, S. Li, S. Zhang, Z. Chen, K. Zhang, S.S. Al-Deyab, Y. Lai, One-dimensional TiO2 nanotube photocatalysts for solar water splitting. Adv Sci. 4, 1600152 (2017)

    Article  Google Scholar 

  16. M.M. Momeni, M.G. Hosseini, Different TiO2 nanotubes for back illuminated dye sensitized solar cell: fabrication, characterization and electrochemical impedance properties of DSSCs. J. Mater. Sci. Mater. Electron. 25, 5027–5034 (2014)

    Article  Google Scholar 

  17. J. Huang, J. Shen, S. Li, J. Cai, S. Wang, Y. Lu, J. He, C.J. Carmalt, I.P. Parkin, Y. Lai, TiO2 nanotube arrays decorated with Au and Bi2S3 nanoparticles for efficient Fe3+ ions detection and dye photocatalytic degradation. J. Mater. Sci. Technol. 39, 28–38 (2020)

    Article  Google Scholar 

  18. Y. Hou, X. Li, Q. Zhao, X. Quan, G. Chen, TiO2 nanotube/Ag-AgBr three-component nanojunction for efficient photoconversion. J. Mater. Chem. 21, 18067–18076 (2011)

    Article  Google Scholar 

  19. M.M. Momeni, M. Akbarnia, Y. Ghayeb, Preparation of S–W-codoped TiO2 nanotubes and effect of various hole scavengers on their photoelectrochemical activity: alcohol series. Int. J. Hydrog. Energ. 45, 33552–33562 (2020)

    Article  Google Scholar 

  20. J. Ananpattarachai, P. Kajitvichyanukul, S. Seraphin, Visible light absorption ability and photocatalytic oxidation activity of various interstitial N-doped TiO2 prepared from different nitrogen dopants. J. Hazard. Mater. 168, 253–261 (2009)

    Article  Google Scholar 

  21. M.M. Momeni, Y. Ghayeb, F. Ezati, Investigation of the morphology, structural, optical, and photoelectrochemical properties of WO3-Fe2O3/CrTiO2 thin-film photoanodes for water splitting. Appl. Phys. A Mater 126, 303 (2020)

    Article  ADS  Google Scholar 

  22. F. Wang, Y. Jiang, A. Gautam, Y. Li, R. Amal, Exploring the origin of enhanced activity and reaction pathway for photocatalytic H2 production on Au/B-TiO2 catalysts. ACS Catal. 4, 1451–1457 (2014)

    Article  Google Scholar 

  23. R. Jaiswal, N. Patel, A. Dashora, R. Fernandes, M. Yadav, R. Edla, R.S. Varma, D.C. Kothari, B.L. Ahuja, A. Miotello, Efficient Co-B-codoped TiO2 photocatalyst for degradation of organic water pollutant under visible light. Appl. Catal. B Environ. 183, 242–253 (2016)

    Article  Google Scholar 

  24. S. Zhang, Synergistic effects of C–Cr codoping in TiO2 and enhanced sonocatalytic activity under ultrasonic irradiation. Ultrason. Sonochem. 19, 767–771 (2012)

    Article  Google Scholar 

  25. F. Tao, Y.Q. Zhao, G.Q. Zhang, H.L. Li, Electrochemical characterization on cobalt sulfide for electrochemical supercapacitors. Electrochem. Commun. 9, 1282–1287 (2007)

    Article  Google Scholar 

  26. J. Dong, J. Huang, A. Wang, G.V. Biesold-McGee, X. Zhang, S. Gao, S. Wang, Y. Lai, Z. Lin, Vertically-aligned Pt-decorated MoS2 nanosheets coated on TiO2 nanotube arrays enable high-efficiency solar-light energy utilization for photocatalysis and self-cleaning SERS devices. Nano Energ. 71, 104579 (2020)

    Article  Google Scholar 

  27. Q. Wang, J. Cai, G. Biesold-McGee, J. Huang, Y.H. Ng, H. Sun, J. Wang, Y. Lai, Z. Lin, Silk fibroin-derived nitrogen-doped carbon quantum dots anchored on TiO2 nanotube arrays for heterogeneous photocatalytic degradation and water splitting. Nano Energ. 78, 105313 (2020)

    Article  Google Scholar 

  28. V. Mote, Y. Purushotham, B. Dole, Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. J. Theor. Appl. Phys. 6, 6 (2012)

    Article  ADS  Google Scholar 

  29. W. Zhang, Y. He, M. Zhang, Z. Yin, Q. Chen, Raman scattering study on anatase TiO2 nanocrystals. J. Phys. D Appl. Phys. 33, 912 (2000)

    Article  ADS  Google Scholar 

  30. S.H. Kang, J.Y. Kim, H.S. Kim, Y.E. Sung, Formation and mechanistic study of self-ordered TiO2 nanotubes on Ti substrate. J. Ind. Eng. Chem. 14, 52–59 (2008)

    Article  Google Scholar 

  31. J. Li, N. Lu, X. Quan, S. Chen, H. Zhao, Facile method for fabricating boron-doped TiO2 nanotube array with enhanced photoelectrocatalytic properties. Ind. Eng. Chem. Res. 47, 3804–3808 (2008)

    Article  Google Scholar 

  32. M.W. Kanan, D.G. Nocera, In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 321, 1072–1075 (2008)

    Article  ADS  Google Scholar 

  33. K.J. McDonald, K.S. Choi, Photodeposition of co-based oxygen evolution catalysts on α-Fe2O3 photoanodes. Chem. Mater. 23, 1686–1693 (2011)

    Article  Google Scholar 

  34. R. Sanjines, H. Tang, H. Berger, F. Gozzo, G. Margaritondo, F. Levy, Electronic structure of anatase TiO2 oxide. J. Appl. Phys. 75, 2945–2951 (1994)

    Article  ADS  Google Scholar 

  35. L. Jing, Z. Xu, X. Sun, J. Shang, W. Cai, The surface properties and photocatalytic activities of ZnO ultrafine particles. Appl. Surf. Sci. 180, 308–314 (2001)

    Article  ADS  Google Scholar 

  36. J.C. Yu, J. Yu, J. Zhao, Enhanced photocatalytic activity of mesoporous and ordinary TiO2 thin films by sulfuric acid treatment. Appl. Catal. B Environ. 36, 31–44 (2002)

    Article  Google Scholar 

  37. J. Xu, Y. Ao, M. Chen, D. Fu, Low-temperature preparation of Boron-doped titania by hydrothermal method and its photocatalytic activity. J. Alloy Compd. 484, 73–79 (2009)

    Article  Google Scholar 

  38. S. Rehman, R. Ullah, A. Butt, N. Gohar, Strategies of making TiO2 and ZnO visible light active. J. Hazard. Mater. 170, 560–569 (2009)

    Article  Google Scholar 

  39. M.M. Momeni, M. Taghinejad, Y. Ghayeb, R. Bagheri, Z. Song, Preparation of various boron-doped TiO2 nanostructures by in situ anodizing method and investigation of their photoelectrochemical and photocathodic protection properties. J. Iran. Chem. Soc. 16, 1839–1851 (2019)

    Article  Google Scholar 

  40. Q. Kang, J. Cao, Y. Zhang, L. Liu, H. Xu, J. Ye, Reduced TiO2 nanotube arrays for photoelectrochemical water splitting. J. Mater. Chem. A 1, 5766–5774 (2013)

    Article  Google Scholar 

  41. M.M. Momeni, Y. Ghayeb, F. Ezati, Fabrication, characterization and photoelectrochemical activity of tungsten-copper co-sensitized TiO2 nanotube composite photoanodes. J. Colloid Interface Sci. 514, 70–82 (2018)

    Article  ADS  Google Scholar 

  42. M.Z. Ge, S.H. Li, J.Y. Huang, K.Q. Zhang, S.S. Al-Deyab, Y.K. Lai, TiO2 nanotube arrays loaded with reduced graphene oxide films: facile hybridization and promising photocatalytic application. J. Mater. Chem. 3, 3491–3499 (2015)

    Article  Google Scholar 

  43. F.G. Cai, F. Yang, Y.F. Jia, C. Ke, C.H. Cheng, Y. Zhao, Bi2S3-modified TiO2 nanotube arrays: easy fabrication of heterostructure and effective enhancement of photoelectrochemical property. J. Mater. Sci. 48, 6001–6007 (2013)

    Article  ADS  Google Scholar 

  44. X. Cui, H. Gu, Y. Guan, G. Ren, Z. Ma, Y. Yin, J. Liu, X. Cui, L. Yao, Y. Yin, D. Wang, G. Jin, S. Rong, L. Tong, J. Hou, M. Li, Fabrication of AgInS2 nanoparticles sensitized TiO2 nanotube arrays and their photoelectrochemical properties. Sol. Energy Mater. Sol. Cells 137, 101–106 (2015)

    Article  Google Scholar 

  45. M.M. Momeni, M. Hakimian, A. Kazempour, Preparation and characterization of manganese-TiO2 nanocomposites for solar water splitting. Surf. Eng. 32, 514–519 (2016)

    Article  Google Scholar 

  46. M. Mollavali, C. Falamaki, S. Rohani, High performance NiS nanoparticles sensitized TiO2 nanotube arrays for water reduction. Int. J. Hydrog. Energy 41, 5887–5901 (2016)

    Article  Google Scholar 

  47. D. Zhang, J. Chen, Q. Xiang, Y. Li, M. Liu, Y. Liao, Transition metal ion (Fe Co, Cr, Mn, etc.) doping of TiO2 nanotubes: a general approach. Inorg. Chem. 58, 12511–12515 (2019)

    Article  Google Scholar 

  48. V. Nguyen, Q. Cai, C.A. Grimes, Towards efficient visible-light active photocatalysts: CdS/Au sensitized TiO2 nanotube arrays. J. Colloid Interface Sci. 483, 287–294 (2016)

    Article  ADS  Google Scholar 

  49. M.Z. Ge, C.Y. Cao, S.H. Li, Y.X. Tang, L.N. Wang, N. Qi, J.Y. Huang, K.Q. Zhang, S.S. Al-Deyab, Y.K. Lai, In situ plasmonic Ag nanoparticle anchored TiO2 nanotube arrays as visible-light-driven photocatalysts for enhanced water splitting. Nanoscale 8, 5226–5234 (2016)

    Article  ADS  Google Scholar 

  50. C.Y. Su, L.C. Wang, W.S. Liu, C.C. Wang, T.P. Perng, Photocatalysis and hydrogen evolution of Al- and Zn-doped TiO2 nanotubes fabricated by atomic layer deposition. ACS Appl. Mater. Interfaces 10, 33287–33295 (2018)

    Article  Google Scholar 

  51. Y. Li, Q. Wang, J. Jin, Z. Zhang, S. Gao, Construction of TiO2 nanotube arrays co-sensitized by Sb2S3-Bi2S3 microspheresby UV-assisted photodeposition for the enhanced photoelectrochemical performance. Ceram. Int. 44, 12825–12830 (2018)

    Article  Google Scholar 

  52. C. Das, P. Roy, M. Yang, H. Jha, P. Schmuki, Nb doped TiO2 nanotubes for enhanced photoelectrochemical water splitting. Nanoscale 3, 3094–3096 (2011)

    Article  ADS  Google Scholar 

  53. M.M. Momeni, Y. Ghayeb, F. Ezati, Iron-tungsten/titania nanotube films for photoelectrochemical water splitting. Surf. Eng. 36, 6–12 (2020)

    Article  Google Scholar 

  54. M.M. Momeni, M. Mahvari, Y. Ghayeb, Photoelectrochemical properties of iron-cobalt WTiO2 nanotube photoanodes for water splitting and photocathodic protection of stainless steel. J. Electroanal. Chem. 832, 7–23 (2019)

    Article  Google Scholar 

  55. S.H. Khansari-Zadeh, M.M. Momeni, H. Farrokhpour, Effect of sacrificial agents on the photoelectrochemical properties of titanium dioxide co-doped with tungsten and manganese as new visible light active. J. Iran. Chem. Soc. 17, 3317–3326 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamad Mohsen Momeni.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Momeni, M.M., Taghinejad, M., Ghayeb, Y. et al. Photocatalytic oxidation of benzyl alcohol and the photoelectrochemical water splitting of visible light-activated TiO2 nanostructures prepared by one-step titanium anodization. Appl. Phys. A 127, 104 (2021). https://doi.org/10.1007/s00339-021-04272-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04272-8

Keywords

Navigation