Skip to main content

Advertisement

Log in

Interaction of the synthesized anticancer compound of the methyl-glycine 1,10-phenanthroline platinum nitrate with human serum albumin and human hemoglobin proteins by spectroscopy methods and molecular docking

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

In the present study, the interaction of the novel synthesized platinum complex named methyl-glycine 1,10-phenanthroline platinum nitrate product with two most crucial blood carrier proteins of hemoglobin (Hb) and human serum albumin (HSA) has been investigated. Notably, structural alternation ability of the above anticancer compound was assessed at various temperatures through multispectroscopic techniques such as far-UV circular dichroism (CD) and fluorescence with the participation of the molecular docking targeting Hb and HSA in the systems of the medicine delivery. Fluctuations in the inherent fluorescence intensities of the proteins in consequence of the Pt(II) complex binding represented statics of the quenching system. It should be mentioned that thermodynamic and binding parameters have been calculated through the analysis of the outcomes of the quenching and outcomes of van’t Hoff equation for the two proteins. Theoretical and experimental findings pointed out that the leading force for the Pt(II) complex interaction was electrostatic for HSA and hydrophobic interactions for Hb. Moreover, fluorescence experiments discovered that one binding site would be available because of the Pt(II) complex binding in the two proteins accompanied by a negative Gibbs free energy value. Additionally, the far-UV CD outputs suggested that the Pt(II) complex would cause some variations in the regular secondary and tertiary structures of the HSA as the remarkable going down in the α helical contents of proteins structures at different temperatures equal to 25 °C and 37 °C; however, any noteworthy modifications have not been seen in the respective structures of Hb. However, the interaction between the newly made-up medicine (Pt(II) complex) and the two most crucial blood carrier proteins of the Hb and HSA made a notable shifting in the structures and conformations of the proteins via many fluctuations in the secondary and tertiary structures of the two proteins. Hence, such researches of designing the novel metal anticancer medicines may gather useful data for exploring the more suitable path in the face-off with severe disorders like various cancers through inventing and developing metal medical compounds that are more advantageous and have fewer consequences.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M.K. Safo, M.H. Ahmed, M.S. Ghatge, T. Boyiri, Hemoglobin–ligand binding: understanding Hb function and allostery on atomic level. Biochim. Biophys. Acta Proteins Proteom. 1814(6), 797–809 (2011)

    Article  CAS  Google Scholar 

  2. F. Ding, B.-Y. Han, W. Liu, L. Zhang, Y. Sun, Interaction of imidacloprid with hemoglobin by fluorescence and circular dichroism. J. Fluoresc. 20(3), 753–762 (2010)

    Article  CAS  PubMed  Google Scholar 

  3. A. Deep, Y. Kumar, P. Syal, S. Kumar, Method for non-invasive hemoglobin determination. Measurement (Lab-Hb), 7(3), 1–8 (2019)

    Google Scholar 

  4. C. Thomas, A.B. Lumb, Physiology of haemoglobin. BJA Educ. 12(5), 251–256 (2012)

    Google Scholar 

  5. C. Helms, D.B. Kim-Shapiro, Hemoglobin-mediated nitric oxide signaling. Free Radic. Biol. Med. 61, 464–472 (2013)

    Article  CAS  PubMed  Google Scholar 

  6. G. Fanali, A. Di Masi, V. Trezza, M. Marino, M. Fasano, P. Ascenzi, Human serum albumin: from bench to bedside. Mol. Asp. Med. 33(3), 209–290 (2012)

    Article  CAS  Google Scholar 

  7. M. Maciążek-Jurczyk, A. Szkudlarek, M. Chudzik, J. Pożycka, A. Sułkowska, Alteration of human serum albumin binding properties induced by modifications: a review. Spectrochim. Acta A Mol. Biomol. Spectrosc. 188, 675–683 (2018)

    Article  PubMed  CAS  Google Scholar 

  8. M.T. Larsen, M. Kuhlmann, M.L. Hvam, K.A. Howard, Albumin-based drug delivery: harnessing nature to cure disease. Mol. Cell Ther. 4(1), 3 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  9. M. Rezaei-Tavirani, S.H. Moghaddamnia, B. Ranjbar, M. Amani, S.-A. Marashi, Conformational study of human serum albumin in pre-denaturation temperatures by differential scanning calorimetry, circular dichroism and UV spectroscopy. BMB Rep. 39(5), 530–536 (2006)

    Article  CAS  Google Scholar 

  10. S. Tayyab, M.M. Izzudin, M.Z. Kabir, S.R. Feroz, W.-V. Tee, S.B. Mohamad et al., Binding of an anticancer drug, axitinib to human serum albumin: fluorescence quenching and molecular docking study. J. Photochem. Photobiol. B 162, 386–394 (2016)

    Article  CAS  PubMed  Google Scholar 

  11. R. dos Santos, C. Figueiredo, A.C. Viecinski, A.S. Pina, A.J. Barbosa, A.C.A. Roque, Designed affinity ligands to capture human serum albumin. J. Chromatogr. A 1583, 88–97 (2019)

    Article  PubMed  CAS  Google Scholar 

  12. M.Z. Kabir, A.K. Mukarram, S.B. Mohamad, Z. Alias, S. Tayyab, Characterization of the binding of an anticancer drug, lapatinib to human serum albumin. J. Photochem. Photobiol. B 160, 229–239 (2016)

    Article  CAS  PubMed  Google Scholar 

  13. B. Elsadek, F. Kratz, Impact of albumin on drug delivery—new applications on the horizon. J. Control Release 157(1), 4–28 (2012)

    Article  CAS  PubMed  Google Scholar 

  14. F. Kratz, Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles. J. Control Release 132(3), 171–183 (2008)

    Article  CAS  PubMed  Google Scholar 

  15. Y. Gou, Z. Zhang, D. Li, L. Zhao, M. Cai, Z. Sun et al., HSA-based multi-target combination therapy: regulating drugs’ release from HSA and overcoming single drug resistance in a breast cancer model. Drug Deliv. 25(1), 321–329 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. B. Rosenberg, L. VanCamp, J.E. Trosko, V.H. Mansour, Platinum compounds: a new class of potent antitumour agents. Nature. 222(5191), 385–386 (1969)

    Article  CAS  PubMed  Google Scholar 

  17. Q. Mi, S. Shu, C. Yang, C. Gao, X. Zhang, X. Luo et al., Current status for oral platinum (IV) anticancer drug development. Radiat. Oncol. 7, 231–247 (2018)

    Google Scholar 

  18. T. Falta, G. Koellensperger, A. Standler, W. Buchberger, R.M. Mader, S. Hann, Quantification of cisplatin, carboplatin and oxaliplatin in spiked human plasma samples by ICP–SFMS and hydrophilic interaction liquid chromatography (HILIC) combined with ICP–MS detection. J. Anal. At. Spectrom. 24(10), 1336–1342 (2009)

    Article  CAS  Google Scholar 

  19. L. Messori, A. Merlino, Cisplatin binding to proteins: a structural perspective. Coord. Chem. Rev. 315, 67–89 (2016)

    Article  CAS  Google Scholar 

  20. G. Ferraro, L. Massai, L. Messori, A. Merlino, Cisplatin binding to human serum albumin: a structural study. Chem. Commun. 51(46), 9436–9439 (2015)

    Article  CAS  Google Scholar 

  21. D. Esteban-Fernández, E. Moreno-Gordaliza, B. Cañas, M.A. Palacios, M.M. Gómez-Gómez, Analytical methodologies for metallomics studies of antitumor Pt-containing drugs. Metallomics 2(1), 19–38 (2010)

    Article  PubMed  Google Scholar 

  22. N.P. Farell, Platinum formulations as anticancer drugs clinical and pre-clinical studies. Curr. Top. Med. Chem. 11(21), 2623–2631 (2011)

    Article  Google Scholar 

  23. Y. Wang, H. Wang, H. Li, H. Sun, Metallomic and metalloproteomic strategies in elucidating the molecular mechanisms of metallodrugs. Dalton Trans. 44(2), 437–447 (2015)

    Article  CAS  PubMed  Google Scholar 

  24. A. Divsalar, A. Saboury, R. Yousefi, A. Moosavi-Movahedi, H. Mansoori-Torshizi, Spectroscopic and cytotoxic studies of the novel designed palladium (II) complexes: β-Lactoglobulin and K562 as the targets. Int. J. Biol. Macromol. 40(4), 381–386 (2007)

    Article  CAS  PubMed  Google Scholar 

  25. A. Gholamian, A. Divsalar, M. Saiedifar, B. Ghalandari, A.A. Saboury, B. Koohshekan, Generation of reactive oxygen species via inhibition of liver catalase by oxalli-palladium: a spectroscopic and docking study. Process Biochem. 52, 165–173 (2017)

    Article  CAS  Google Scholar 

  26. H. Mansoori-Torshizi, M. Islami-Moghaddam, A.A. Saboury, A microcalorimetry and spectroscopy study on the interaction of BSA with 2, 2′-bipyridine octylglycinato palladium (II) nitrate. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao 35(10), 886–890 (2003)

    CAS  PubMed  Google Scholar 

  27. A. Divsalar, M.J. Bagheri, A.A. Saboury, H. Mansoori-Torshizi, M. Amani, Investigation on the interaction of newly designed anticancer Pd (II) complexes with different aliphatic tails and human serum albumin. J. Phys. Chem. B 113(42), 14035–14042 (2009)

    Article  CAS  PubMed  Google Scholar 

  28. N. Zhang, Y. Du, M. Cui, J. Xing, Z. Liu, S. Liu, Probing the interaction of cisplatin with cytochrome c by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Anal. Chem. 84(14), 6206–6212 (2012)

    Article  CAS  PubMed  Google Scholar 

  29. L. Banci, I. Bertini, O. Blaževitš, V. Calderone, F. Cantini, J. Mao et al., Interaction of cisplatin with human superoxide dismutase. J. Am. Chem. Soc. 134(16), 7009–7014 (2012)

    Article  CAS  PubMed  Google Scholar 

  30. O. Abazari, Z. Shafaei, A. Divsalar, M. Eslami-Moghadam, B. Ghalandari, A.A. Saboury, Probing the biological evaluations of a new designed Pt(II) complex using spectroscopic and theoretical approaches: human hemoglobin as a target. J. Biomol. Struct. Dyn. 34(5), 1123–1131 (2016)

    Article  CAS  PubMed  Google Scholar 

  31. M.K. Zia, T. Siddiqui, S.S. Ali, A.A. Rehman, H. Ahsan, F.H. Khan, Chemotherapeutic drugs and plasma proteins: exploring new dimensions. Curr. Protein Pept. Sci. 19(10), 937–947 (2018)

    Article  CAS  PubMed  Google Scholar 

  32. U. Ndagi, N. Mhlongo, M.E. Soliman, Metal complexes in cancer therapy—an update from drug design perspective. Drug Des. Dev. Ther. 11, 599 (2017)

    Article  CAS  Google Scholar 

  33. E.Z. Jahromi, A. Divsalar, A.A. Saboury, S. Khaleghizadeh, H. Mansouri-Torshizi, I. Kostova, Palladium complexes: new candidates for anti-cancer drugs. J. Iran. Chem. Soc. 13(5), 967–989 (2016)

    Article  CAS  Google Scholar 

  34. M. Kantoury, M. Eslami Moghadam, A.A. Tarlani, A. Divsalar, Structure effect of some new anticancer Pt(II) complexes of amino acid derivatives with small branched or linear hydrocarbon chains on their DNA interaction. Chem. Biol. Drug Des. 88(1), 76–87 (2016)

    Article  CAS  PubMed  Google Scholar 

  35. U. Sahebi, A. Divsalar, Synergistic and inhibitory effects of propolis and aspirin on structural changes of human hemoglobin resulting from glycation: an in vitro study. J. Iran. Chem. Soc. 13(11), 2001–2011 (2016)

    Article  CAS  Google Scholar 

  36. P.H. Schippers, H.P. Dekkers, Direct determination of absolute circular dichroism data and calibration of commercial instruments. Anal. Chem. 53(6), 778–782 (1981)

    Article  CAS  Google Scholar 

  37. P. Manavalan, W.C. Johnson Jr., Variable selection method improves the prediction of protein secondary structure from circular dichroism spectra. Anal. Biochem. 167(1), 76–85 (1987)

    Article  CAS  PubMed  Google Scholar 

  38. G.M. Morris, R. Huey, W. Lindstrom, M.F. Sanner, R.K. Belew, D.S. Goodsell et al., AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J. Comput. Chem. 30(16), 2785–2791 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. G. Wolber, A.A. Dornhofer, T. Langer, Efficient overlay of small organic molecules using 3D pharmacophores. J. Comput. Aided Mol. Des. 20(12), 773–788 (2006)

    Article  CAS  PubMed  Google Scholar 

  40. I. Petitpas, A.A. Bhattacharya, S. Twine, M. East, S. Curry, Crystal structure analysis of warfarin binding to human serum albumin anatomy of drug site I. J. Biol. Chem. 276(25), 22804–22809 (2001)

    Article  CAS  PubMed  Google Scholar 

  41. G. Fermi, M. Perutz, B. Shaanan, R. Fourme, The crystal structure of human deoxyhaemoglobin at 1.74 Å resolution. J. Mol. Biol. 175(2), 159–174 (1984)

    Article  CAS  PubMed  Google Scholar 

  42. M.F. Sanner, Python: a programming language for software integration and development. J. Mol. Graph. Model. 17(1), 57–61 (1999)

    CAS  PubMed  Google Scholar 

  43. W. Humphrey, A. Dalke, K. Schulten, VMD: visual molecular dynamics. J. Mol. Graph. 14(1), 33–38 (1996)

    Article  CAS  PubMed  Google Scholar 

  44. A. Taheri-Kafrani, E. Asgari-Mobarakeh, A.-K. Bordbar, T. Haertlé, Structure–function relationship of β-lactoglobulin in the presence of dodecyltrimethyl ammonium bromide. Colloids Surf. B Biointerfaces 75(1), 268–274 (2010)

    Article  CAS  PubMed  Google Scholar 

  45. B. Ghalandari, A. Divsalar, A.A. Saboury, K. Parivar, β-Lactoglobulin nanoparticle as a chemotherapy agent carrier for oral drug delivery system. J. Iran. Chem. Soc. 12(4), 613–619 (2015)

    Article  CAS  Google Scholar 

  46. M. Zaharia, R. Gradinaru, Interaction of human hemoglobin with methotrexate. J. Appl. Spectrosc. 82(2), 278–285 (2015)

    Article  CAS  Google Scholar 

  47. P. Mandal, T. Ganguly, Fluorescence spectroscopic characterization of the interaction of human adult hemoglobin and two isatins, 1-methylisatin and 1-phenylisatin: a comparative study. J. Phys. Chem. B 113(45), 14904–14913 (2009)

    Article  CAS  PubMed  Google Scholar 

  48. P. Seal, J. Sikdar, A. Roy, R. Haldar, Acetaminophen interacts with human hemoglobin: optical, physical and molecular modeling studies. J. Biomol. Struct. Dyn. 35(6), 1307–1321 (2017)

    Article  CAS  PubMed  Google Scholar 

  49. L. Stryer, Intramolecular resonance transfer of energy in proteins. Biochim. Biophys. Acta 35, 242–244 (1959)

    Article  CAS  PubMed  Google Scholar 

  50. A. Divsalar, A. Saboury, A.A. Moosavi-Movahedi, Conformational and structural analysis of bovine β lactoglobulin-A upon interaction with Cr+3. Protein J. 25(2), 157–165 (2006)

    Article  CAS  PubMed  Google Scholar 

  51. Y. Sun, S. Wei, C. Yin, L. Liu, C. Hu, Y. Zhao et al., Synthesis and spectroscopic characterization of 4-butoxyethoxy-N-octadecyl-1, 8-naphthalimide as a new fluorescent probe for the determination of proteins. Bioorg. Med. Chem. Lett. 21(12), 3798–3804 (2011)

    Article  CAS  PubMed  Google Scholar 

  52. M. Ghali, Static quenching of bovine serum albumin conjugated with small size CdS nanocrystalline quantum dots. J. Lumin. 130(7), 1254–1257 (2010)

    Article  CAS  Google Scholar 

  53. M.-F. Zhang, Z.-Q. Xu, Y.-S. Ge, F.-L. Jiang, Y. Liu, Binding of fullerol to human serum albumin: spectroscopic and electrochemical approach. J. Photochem. Photobiol. B 108, 34–43 (2012)

    Article  CAS  PubMed  Google Scholar 

  54. S. Tabassum, W.M. Al-Asbahy, M. Afzal, F. Arjmand, Synthesis, characterization and interaction studies of copper based drug with human serum albumin (HSA): spectroscopic and molecular docking investigations. J. Photochem. Photobiol. B 114, 132–139 (2012)

    Article  CAS  PubMed  Google Scholar 

  55. J. Ding, L. Yuan, L. Gao, J. Chen, Fluorescence quenching of a rhodamine derivative: selectively sensing Cu2+ in acidic aqueous media. J. Lumin. 132(8), 1987–1993 (2012)

    Article  CAS  Google Scholar 

  56. X.M. He, D.C. Carter, Atomic structure and chemistry of human serum albumin. Nature 358(6383), 209 (1992)

    Article  CAS  PubMed  Google Scholar 

  57. E. Froehlich, J. Mandeville, C. Jennings, R. Sedaghat-Herati, H. Tajmir-Riahi, Dendrimers bind human serum albumin. J. Phys. Chem. B 113(19), 6986–6993 (2009)

    Article  CAS  PubMed  Google Scholar 

  58. A. Divsalar, A. Saboury, H. Mansoori-Torshizi, B. Hemmatinejad, Comparative and structural analysis of the interaction between β-lactoglobulin type A and B with a new anticancer component (2, 2/-bipyridin n-hexyl dithiocarbamatoPd (II) nitrate). Bull. Korean Chem. Soc. 27, 1801–1808 (2006)

    Article  CAS  Google Scholar 

  59. A. Divsalar, A.A. Saboury, H. Mansoori-Torshizi, F. Ahmad, Design, synthesis, and biological evaluation of a new palladium (II) complex: β-lactoglobulin and K562 as targets. J. Phys. Chem. B 114(10), 3639–3647 (2010)

    Article  CAS  PubMed  Google Scholar 

  60. Y.-Q. Wang, H.-M. Zhang, G.-C. Zhang, W.-H. Tao, S.-H. Tang, Binding of brucine to human serum albumin. J. Mol. Struct. 830(1–3), 40–45 (2007)

    Article  CAS  Google Scholar 

  61. C. N’Soukpoe-Kossi, R. Sedaghat-Herati, C. Ragi, S. Hotchandani, H. Tajmir-Riahi, Retinol and retinoic acid bind human serum albumin: stability and structural features. Int. J. Biol. Macromol. 40(5), 484–490 (2007)

    Article  PubMed  CAS  Google Scholar 

  62. Y.-J. Hu, H.-L. Yue, X.-L. Li, S.-S. Zhang, E. Tang, L.-P. Zhang, Molecular spectroscopic studies on the interaction of morin with bovine serum albumin. J. Photochem. Photobiol. B 112, 16–22 (2012)

    Article  CAS  PubMed  Google Scholar 

  63. F. Faridbod, M.R. Ganjali, B. Larijani, S. Riahi, A.A. Saboury, M. Hosseini et al., Interaction study of pioglitazone with albumin by fluorescence spectroscopy and molecular docking. Spectrochim. Acta A Mol. Biomol. Spectrosc. 78(1), 96–101 (2011)

    Article  PubMed  CAS  Google Scholar 

  64. J.T. Yang, C.S. Wu, H.M. Martinez, Calculation of protein conformation from circular dichroism. Methods Enzymol. 130, 208–269 (1986)

    Article  CAS  PubMed  Google Scholar 

  65. L. Yang, D. Huo, C. Hou, M. Yang, H. Fa, X. Luo, Interaction of monosulfonate tetraphenyl porphyrin (H2TPPS1) with plant-esterase: determination of the binding mechanism by spectroscopic methods. Spectrochim. Acta A Mol. Biomol. Spectrosc. 78(5), 1349–1355 (2011)

    Article  PubMed  CAS  Google Scholar 

  66. J. Ma, K. Chen, X. Zheng, M. Guo, J. Ma, Q. Tang et al., Spectroscopy study on the interaction of colchicine and human serum albumin. Guang pu xue yu guang pu fen xi = Guang pu 27(12), 2485–2489 (2007)

    CAS  PubMed  Google Scholar 

  67. J. Xi, R. Guo, Interactions between flavonoids and hemoglobin in lecithin liposomes. Int. J. Biol. Macromol. 40(4), 305–311 (2007)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Notably, the Research Council of Kharazmi University would be greatly acknowledged for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adele Divsalar.

Ethics declarations

Conflict of interest

As a result of this, it is declared that we do not have any conflicts of interest regarding the present research.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abazari, O., Shafaei, Z., Divsalar, A. et al. Interaction of the synthesized anticancer compound of the methyl-glycine 1,10-phenanthroline platinum nitrate with human serum albumin and human hemoglobin proteins by spectroscopy methods and molecular docking. J IRAN CHEM SOC 17, 1601–1614 (2020). https://doi.org/10.1007/s13738-020-01879-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-020-01879-1

Keywords

Navigation