Skip to main content

Advertisement

Log in

Interaction of Human Hemoglobin with Methotrexate

  • Published:
Journal of Applied Spectroscopy Aims and scope

This study focuses on the interaction between methotrexate and human hemoglobin using steady-state ultraviolet-visible and fluorescence quenching methods. Fluorescence quenching was found to be valuable in assessing drug binding to hemoglobin. The quenching of methotrexate is slightly smaller than the quenching observed with related analogs (dihydrofolate and tetrahydrofolate). The quenching studies were performed at four different temperatures and various pH values. The number of binding sites for tryptophan is ~1. Parameter-dependent assays revealed that electrostatic forces play an essential role in the methotrexate–hemoglobin interaction. Furthermore, the complex was easily eluted using gel filtration chromatography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. J. H. Roughton, Handbook of Physiology, Am. Physiol. Soc., Washington DC, 767–825 (1964).

    Google Scholar 

  2. D. A. Matthews, R. A. Alden, J. T. Bolin, S. T. Freer, R. Hamlin, N. Xuong, J. Kraut, M. Poe, M. Williams, and K. Hoogsteen, Science, 80, No. 197, 452–455 (1977).

    Article  ADS  Google Scholar 

  3. M. E. Weinblatt, J. Rheumatol. Suppl., 12, 35–39 (1985).

    Google Scholar 

  4. R. Rau and G. Herborn, Clin. Exp. Rheumatol., 22, No. 35, 83–94 (2004).

    Google Scholar 

  5. E. S. L. Chan and B. N. Cronstein, Arthritis Res., 4, 266–273 (2002).

    Article  Google Scholar 

  6. A. Saleh, M. Abuhilal, and B. Cheung, J. Turk. Acad. Dermatol., 13, 1–13 (2010).

    Google Scholar 

  7. W. Y. Leung, Hong Kong J. Dermatol. Venereol., 17, 13–19 (2009).

    Google Scholar 

  8. L. S. Frankel, Y. M. Wang, J. Shuster, R. Nitschke, E. J. Doering, and J. Pullen, J. Clin. Oncol., 1, 804–809 (1983).

    Google Scholar 

  9. R. A. Lustig, P. A. DeMare, and S. Kramer, Cancer, 37, 2703–2708 (1976).

    Article  Google Scholar 

  10. R. L. Schilsky, B. D. Bailey, and B. A. Chabner, Proc. Natl. Acad. Sci.USA, 77, 2919–2922 (1980).

    Article  ADS  Google Scholar 

  11. H. Breithaupt and E. Küenzlen, Oncology, 40, 85–89 (1983).

    Article  Google Scholar 

  12. N. T. T. Tran, T.-H. Wang, C.-Y. Lin, and Y. Tai, Biochem. Eng. J., 78, 175–180 (2013).

    Article  Google Scholar 

  13. S. Bhaskaran, C. G. Harish, and P. K. Lakshmi, J. Pharm. Res., 4, 3237–3240 (2011).

    Google Scholar 

  14. E. den Boer, R. J. W. Meesters, B. D. van Zelst, T. M. Luider, J. M. W. Hazes, S. G. Heil, and R. de Jonge, Anal. Bioanal. Chem., 405, 1673–1681 (2013).

    Article  Google Scholar 

  15. C. Cai, X. Chen, and H. Gong, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 72, 46–49 (2009).

    Article  ADS  Google Scholar 

  16. A. Sułkowska, M. Maciążek-Jurczyk, B. Bojko, J. Równicka, and W. W. Sułkowski, J. Mol. Struct., 891, 278–283 (2008).

    Article  ADS  Google Scholar 

  17. F. Ding, Y. Sun, J.-X. Diao, X.-N. Li, X.-L. Yang, Y. Sun, and L. Zhang, J. Photochem. Photobiol. B, 106, 53–60 (2012).

    Article  Google Scholar 

  18. B. Sengupta, S. Chakraborty, M. Crawford, J. M. Taylor, L. E. Blackmon, P. K. Biswas, and W. H. Kramer, Int. J. Biol. Macromol., 51, 250–258 (2012).

    Article  Google Scholar 

  19. J. Xi and R. Guo, Int. J. Biol. Macromol., 40, 305–311 (2007).

    Article  Google Scholar 

  20. P. Mandal, M. Bardhan, and T. Ganguly, J. Photochem. Photobiol. B., 99, 78–86 (2010).

    Article  Google Scholar 

  21. A. J. Martino and F. A. Ferrone, Biophys. J., 56, 781–794 (1989).

    Article  ADS  Google Scholar 

  22. J. Tang, C. Yang, L. Zhou, F. Ma, S. Liu, S. Wei, J. Zhou, and Y. Zhou, Spectrochim. Acta. A. Mol. Biomol. Spectrosc., 96, 461–467 (2012).

    Article  ADS  Google Scholar 

  23. S. V. Lepeshkevich and B. M. Dzhagarov, FEBS J., 272, 6109–6119 (2005).

    Article  Google Scholar 

  24. S. V. Lepeshkevich, N. V. Konovalova, I. I. Stepuro, and B. M. Dzhagarov, J. Mol. Struct., 735-736, 307–313 (2005).

    Article  ADS  Google Scholar 

  25. M. K. Safo, M. H. Ahmed, M. S. Ghatge, and T. Boyiri, Biochim. Biophys. Acta, 1814, 797–809 (2011).

    Article  Google Scholar 

  26. Y. Q. Wang, H. M. Zhang, and Q. H. Zhou, Eur. J. Med. Chem., 44, 2100–2105 (2009).

    Article  Google Scholar 

  27. Y. Q. Wang, H. M. Zhang, G. C. Zhang, S. X. Liu, Q. H. Zhou, Z. H. Fei, and Z. T. Liu, Int. J. Biol. Macromol., 41, 243–250 (2007).

    Article  Google Scholar 

  28. Z. Chi, R. Liu, B. Yang, and H. Zhang, J. Hazard. Mater., 180, 741–747 (2010).

    Article  Google Scholar 

  29. F. Ding, W. Liu, Y. Sun, X.-L. Yang, Y. Sun, and L. Zhang, J. Mol. Struct., 1007, 81–87 (2012).

    Article  ADS  Google Scholar 

  30. X. Yan, B. Liu, B. Chong, and S. Cao, J. Lumin., 142, 155–162 (2013).

    Article  Google Scholar 

  31. H. Cheng, H. Liu, W. Bao, and G. Zou, J. Photochem. Photobiol. B., 105, 126–132 (2011).

    Article  Google Scholar 

  32. S. Maitra, B. Saha, C. R. Santra, A. Mukherjee, S. Goswami, P. K. Chanda, and P. Karmakar, Int. J. Biol. Macromol., 41, 23–29 (2007).

    Article  Google Scholar 

  33. S. Tunç, A. Cetinkaya, and O. Duman, J. Photochem. Photobiol. B, 120, 59–65 (2013).

    Article  Google Scholar 

  34. S. S. Lehrer, Biochemistry, 10, 3254–3263 (1971).

    Article  Google Scholar 

  35. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed., Springer, New York (2006).

    Book  Google Scholar 

  36. K. Chen, S. K. Ballas, R. R. Hantgan, and D. B. Kim-Shapiro, Biophys. J., 87, 4113–4121 (2004).

    Article  Google Scholar 

  37. M. Coppey, D. M. Jameson, and B. Alpert, FEBS Lett., 126, 191–194 (1981).

    Article  Google Scholar 

  38. J. Albani, Structure and Dynamics of Macromolecules: Absorption and Fluorescence Studies, 1st ed., Elsevier, Amsterdam (2004), pp. 345–372.

    Book  Google Scholar 

  39. G. M. Artmann, L. Burns, J. M. Canaves, A. Temiz-Artmann, G. W. Schmid-Schönbein, S. Chien, and C. Maggakis-Kelemen, Eur. Biophys. J., 33, 490–496 (2004).

    Article  Google Scholar 

  40. M. Poe, J. Biol. Chem., 252, 3724–3728 (1977).

    Google Scholar 

  41. S. Y. Park, T. Yokoyama, N. Shibayama, Y. Shiro, and J. R. H. Tame, J. Mol. Biol., 360, 690–701 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Gradinaru.

Additional information

Published in Zhurnal Prikladnoi Spektroskopii, Vol. 82, No. 2, pp. 284–291, March–April, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaharia, M., Gradinaru, R. Interaction of Human Hemoglobin with Methotrexate. J Appl Spectrosc 82, 278–285 (2015). https://doi.org/10.1007/s10812-015-0098-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-015-0098-8

Keywords

Navigation