Skip to main content
Log in

A comparative study in the prediction of thermal conductivity enhancement of nanofluids using ANN-MLP, ANN-RBF, ANFIS, and GMDH methods

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

In this work, four types of data mining methods, namely adaptive neuro-fuzzy inference system, artificial neural network—multilayer perceptron algorithm (ANN-MLP), artificial neural network—radial basis function algorithm (ANN-RBF), and group method of data handling (GMDH) have been used to predict the enhancement of the relative thermal conductivity of a wide range of nanofluids with different base fluids and nanoparticles. The total number of experimental data used in this work is 483 from 18 different nanofluids. The input parameters are thermal conductivity of base fluid and nanoparticles, volume fraction percent, the average size of nanoparticles, and temperature. Although the results showed that all four models are in relatively good agreement with experimental data, the ANFIS method is the best. The average absolute relative deviations (AARD%) between the experimental data and those of obtained using ANFIS, ANN-MLP, ANN-RBF, and GMDH methods were calculated as 2.7, 2.8, 4.2, and 4.3, respectively, for the test sets and as 1.1, 2.4, 3.9, and 4.5, respectively, for the training sets. Comparison between the predictions of the proposed ANN-MLP, ANN-RBF, ANFIS, and GMDH models and those predicted by traditional models, namely Maxwell and Bruggeman models showed that much better agreements can be obtained using the four models especially ANFIS model. Accordingly, the ANFIS method can able us to predict the relative thermal conductivity of new nanofluids in different conditions with good accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. X.Q. Wang, A.S. Mujumdar, Int. J. Therm. Sci. 46, 1–19 (2007)

    Article  Google Scholar 

  2. S. Chol, ASME Publ. Fed. 231, 99–106 (1995)

    Google Scholar 

  3. C. Kleinstreuer, Y. Feng, Nanoscale Res. Lett. 6, 1–13 (2011)

    CAS  Google Scholar 

  4. W. Yu, D.M. France, J.L. Routbort, S.U. Choi, Heat Transf. Eng. 29, 432–460 (2008)

    CAS  Google Scholar 

  5. W. Yu, S. Choi, J. Nanopart. Res. 6, 355–361 (2004)

    Google Scholar 

  6. W. Yu, S. Choi, J.Nanopart. Res. 5, 167–171 (2003)

    CAS  Google Scholar 

  7. Q.-Z. Xue, Phys. Lett. A 307, 313–317 (2003)

    CAS  Google Scholar 

  8. B.-X. Wang, L.-P. Zhou, X.-F. Peng, Int. J. Heat Mass Transf. 46, 2665–2672 (2003)

    CAS  Google Scholar 

  9. J. Maxwell, A Treatise on Electricity and Magnetism vol. 1, chap. 9 (Clarendon, Oxford, 1891)

  10. R. Hamilton, O. Crosser, Ind. Eng. Chem. Fundam. 1, 187–191 (1962)

    CAS  Google Scholar 

  11. V.D. Bruggeman, Ann. Phys. 416, 636–664 (1935)

    Google Scholar 

  12. D.J. Jeffrey, Royal Soc. 355–367 (1973)

  13. R. Davis, Int. J. Thermophys. 7, 609–620 (1986)

    CAS  Google Scholar 

  14. V. Vijayan, A. Ravikumar, Int. J. Comput. Appl. 95 (2014)

  15. M.H. Esfe, H. Rostamian, D. Toghraie, W.-M. Yan, J. Therm. Anal. Calorim. 126, 643–648 (2016)

    Google Scholar 

  16. M.H. Esfe, M.R.H. Ahangar, D. Toghraie, M.H. Hajmohammad, H. Rostamian, H. Tourang, J. Therm. Anal. Calorim. 126, 837–843 (2016)

    Google Scholar 

  17. M. Bahiraei, M. Hangi, Mater. Chem. Phys. 181, 333–343 (2016)

    CAS  Google Scholar 

  18. B. Vaferi, F. Samimi, E. Pakgohar, D. Mowla, Powder Technol. 267, 1–10 (2014)

    CAS  Google Scholar 

  19. M.H. Esfe, S. Saedodin, M. Bahiraei, D. Toghraie, O. Mahian, S. Wongwises, J. Therm. Anal. Calorim. 118, 287–294 (2014)

    Google Scholar 

  20. H.H. Balla, S. Abdullah, W.M.F. WanMahmood, M.A. Razzaq, R. Zulkifli, K. Sopian, Res. Chem. Intermed. 39, 2801–2815 (2013)

    CAS  Google Scholar 

  21. S. Aminossadati, A. Kargar, B. Ghasemi, Int. J. Therm. Sci. 52, 102–111 (2012)

    CAS  Google Scholar 

  22. M. Mehrabi, M. Sharifpur, J.P. Meyer, Int. Commun. Heat Mass Transf. 39, 971–977 (2012)

    CAS  Google Scholar 

  23. A. Lotfizadeh, Commun. ACM 37, 77–85 (1994)

    Google Scholar 

  24. M.T. Hagan, H.B. Demuth, M.H. Beale, (University of Colorado Bookstore, Boulder, 2002

  25. A.G. Ivakhnenko, Soviet Autom. Control 13, 43–55 (1968)

    Google Scholar 

  26. A.G. Ivakhnenko, IEEE Trans. Syst. Man Cybern. 1, 364–378 (1971)

    Google Scholar 

  27. S.J. Farlow, Am. Stat. 35, 210–215 (1981)

    Google Scholar 

  28. A.G. Ivakhnenko, G.A. Ivakhnenko, Pattern Recogn. Image Anal. 5, 527–535 (1995)

    Google Scholar 

  29. D.S. Broomhead, D. Lowe, Complex Syst. 2, 321–355 (1988)

    Google Scholar 

  30. L. Yu, K.K. Lai, S. Wang, Neurocomputing 71, 3295–3302 (2008)

    Google Scholar 

  31. S.A. Iliyas, M. Elshafei, M.A. Habib, A.A. Adeniran, Control Eng. Pract. 21, 962–970 (2013)

    Google Scholar 

  32. S. Chen, C.F.N. Cowan, P.M. Grant, IEEE Trans. Neural Netw. 2, 302–309 (1991)

    CAS  PubMed  Google Scholar 

  33. M. Hojjat, S.G. Etemad, R. Bagheri, J. Thibault, Int. J. Heat Mass Transf. 54, 1017–1023 (2011)

    CAS  Google Scholar 

  34. M. Chandrasekar, S. Suresh, A.C. Bose, Exp. Therm. Fluid Sci. 34, 210–216 (2010)

    CAS  Google Scholar 

  35. K. Anoop, T. Sundararajan, S.K. Das, Int. J. Heat Mass Transf. 52, 2189–2195 (2009)

    CAS  Google Scholar 

  36. S. Murshed, K. Leong, C. Yang, Int. J. Therm. Sci. 47, 560–568 (2008)

    CAS  Google Scholar 

  37. W.-Q. Lu, Q.-M. Fan, Eng. Anal. Bound Elem. 32, 282–289 (2008)

    Google Scholar 

  38. D.-H. Yoo, K. Hong, H.-S. Yang, Thermochim. Acta 455, 66–69 (2007)

    CAS  Google Scholar 

  39. C.H. Li, G. Peterson, J. Appl. Phys. 101, 44312 (2007)

    Google Scholar 

  40. C.H. Li, G. Peterson, J. Appl. Phys. 99, 084314 (2006)

    Google Scholar 

  41. C.H. Chon, K.D. Kihm, S.P. Lee, S.U. Choi, Appl. Phys. Lett. 87, 3107 (2005)

    Google Scholar 

  42. D. Wen, Y. Ding, Int. J. Heat Mass Transf. 47, 5181–5188 (2004)

    CAS  Google Scholar 

  43. S.K. Das, N. Putra, P. Thiesen, W. Roetzel, J. Heat Transf. 125, 567–574 (2003)

    CAS  Google Scholar 

  44. H. Xie, J. Wang, T. Xi, Y. Liu, F. Ai, Q. Wu, J. Appl. Phys. 91, 4568–4572 (2002)

    CAS  Google Scholar 

  45. X. Wang, X. Xu, S.U.S. Choi, J. Thermophys. Heat Transf. 13, 474–480 (1999)

    CAS  Google Scholar 

  46. S. Lee, S.-S. Choi, S. Li, J. Eastman, J. Heat Transf. 121, 280–289 (1999)

    CAS  Google Scholar 

  47. D. Lee, J.-W. Kim, B.G. Kim, J. Phys. Chem. B 110, 4323–4328 (2006)

    CAS  PubMed  Google Scholar 

  48. W. Duangthongsuk, S. Wongwises, Int. J. Heat Mass Transf. 53, 334–344 (2010)

    CAS  Google Scholar 

  49. A. Turgut, I. Tavman, M. Chirtoc, H. Schuchmann, C. Sauter, S. Tavman, Int. J. Thermophys. 30, 1213–1226 (2009)

    CAS  Google Scholar 

  50. W. Duangthongsuk, S. Wongwises, Exp. Therm. Fluid Sci. 33, 706–714 (2009)

    CAS  Google Scholar 

  51. H. Chen, S. Witharana, Y. Jin, C. Kim, Y. Ding, Particuology 7, 151–157 (2009)

    CAS  Google Scholar 

  52. D. Wen, Y. Ding, Int. J. Heat Fluid Flow 26, 855–864 (2005)

    CAS  Google Scholar 

  53. S. Murshed, K. Leong, C. Yang, Int. J. Therm. Sci. 44, 367–373 (2005)

    CAS  Google Scholar 

  54. S.W. Lee, S.D. Park, S. Kang, I.C. Bang, J.H. Kim, Int. J. Heat Mass Transf. 54, 433–438 (2011)

    CAS  Google Scholar 

  55. H.-Q. Xie, J.-C. Wang, T.-G. Xi, Y. Liu, Int. J. Thermophys. 23, 571–580 (2002)

    CAS  Google Scholar 

  56. M.-S. Liu, M.C.-C. Lin, C. Tsai, C.-C. Wang, Int. J. Heat Mass Transf. 49, 3028–3033 (2006)

    CAS  Google Scholar 

  57. Y. Xuan, Q. Li, Int. J. Heat Fluid Flow 21, 58–64 (2000)

    CAS  Google Scholar 

  58. H.U. Kang, S.H. Kim, J.M. Oh, Exp. Heat Transf. 19, 181–191 (2006)

    CAS  Google Scholar 

  59. H. Chen, Y. Ding, A. Lapkin, X. Fan, 11, 1513–1520 (2009)

  60. H. Chen, Y. Ding, Y. He, C. Tan, Chem. Phys. Lett. 444, 333–337 (2007)

    CAS  Google Scholar 

  61. J. Garg, B. Poudel, M. Chiesa, J. Gordon, J. Ma, J. Wang, Z. Ren, Y. Kang, H. Ohtani, J. Nanda, J. Appl. Phys. 103, 074301 (2008)

    Google Scholar 

  62. J.A. Eastman, S. Choi, S. Li, W. Yu, L. Thompson, Appl. Phys. Lett. 78, 718–720 (2001)

    CAS  Google Scholar 

  63. T.-K. Hong, H.-S. Yang, C. Choi, J. Appl. Phys. 97, 064311 (2005)

    Google Scholar 

  64. J.C. Maxwell, (Clarendon press, 1881)

Download references

Acknowledgements

This research was supported by the Research Council of University of Isfahan. The authors also thank Dr. Vahid Moosavi for his assistance and valuable comments on the used algorithms.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Moosavi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moosavi, M., Firoozi Rad, K. & Daneshvar, A. A comparative study in the prediction of thermal conductivity enhancement of nanofluids using ANN-MLP, ANN-RBF, ANFIS, and GMDH methods. J IRAN CHEM SOC 16, 2629–2637 (2019). https://doi.org/10.1007/s13738-019-01725-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-019-01725-z

Keywords

Navigation