Skip to main content
Log in

Statistical modeling of p-nitrophenol degradation using a response surface methodology (RSM) over nano zero-valent iron-modified Degussa P25-TiO2/ZnO photocatalyst with persulfate

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Zero-valent iron-modified Degussa P25-TiO2/ZnO nanocomposites (denoted as P25/Fe0/ZnO) were designed and prepared via Fe0 impregnation of P25-TiO2/ZnO and then were employed in the visible-light photocatalytic degradation of p-nitrophenol (PNP) in the presence of [K2S2O8]. Central composite design was applied for response surface modeling (RSM) to understand the influence of selected factors (pH, [Fe0] wt% and [K2S2O8] concentration) on the degradation of PNP and to determine the interaction between the factors. The maximal PNP degradation efficiency (86.9%) was obtained with P25/1.5 wt% Fe0/ZnO at 3 mg/L of [K2S2O8] concentration and pH 7.5. In addition, the RSM showed a satisfactory correlation between the experimental and predicted values of PNP degradation. The P25/Fe0/ZnO photocatalyst performance was also examined degrading methyl orange and phenol and high degradation efficiency, 82 and 99%, was achieved, respectively. The structure, morphology, light absorption and photocatalytic properties of as-prepared P25/Fe0/ZnO were studied using TEM, BET, XRD, FTIR and DRS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J. Velásquez, S. Valencia, L. Rios, G. Restrepo, J. Marín, Chem. Eng. J. 203, 398 (2012)

    Article  Google Scholar 

  2. V. Mirkhani, S. Tangestaninejad, M. Moghadam, M.H. Habibi, J. Iran. Chem. Soc. 6, 800 (2009)

    Article  CAS  Google Scholar 

  3. S. Suresh, S. Karthikeyan, J. Iran. Chem. Soc. 13, 2049 (2016)

    Article  CAS  Google Scholar 

  4. P.A. Sant, P.V. Kamat, Phys. Chem. Chem. Phys. 4, 198 (2002)

    Article  CAS  Google Scholar 

  5. S. Yuan, J. Mu, R. Mao, Y. Li, Q. Zhang, H. Wang, ACS Appl. Mater. Interfaces 6, 5719 (2014)

    Article  CAS  Google Scholar 

  6. S. Xiao, L. Zhao, X. Leng, X. Lang, J. Lian, Appl. Surf. Sci. 299, 97 (2014)

    Article  CAS  Google Scholar 

  7. H.R. Pouretedal, A.M. Sohrabi, J. Iran. Chem. Soc. 13, 73 (2016)

    Article  CAS  Google Scholar 

  8. S. Sohrabi, F. Akhlaghian, J. Iran. Chem. Soc. 13, 1785 (2016)

    Article  CAS  Google Scholar 

  9. S. Rehman, R. Ullah, A.M. Butt, N.D. Gohar, J. Hazard. Mater. 170, 560 (2009)

    Article  CAS  Google Scholar 

  10. T.J. Athauda, J.G. Neff, L. Sutherlin, U. Butt, R.R. Ozer, ACS Appl. Mater. Interfaces 4, 6917 (2012)

    Article  CAS  Google Scholar 

  11. G.S. Pozan, A. Kambur, Chemosphere 105, 152 (2014)

    Article  CAS  Google Scholar 

  12. I.T. Peternel, N. Koprivanac, A.M.L. Božić, H.M. Kušić, J. Hazard. Mater. 148, 477 (2007)

    Article  CAS  Google Scholar 

  13. D. Zhang, F. Zeng, J. Iran. Chem. Soc. (2017). doi:10.1007/s13738-017-1142-9

    Google Scholar 

  14. S.V. Awate, S.S. Deshpande, K. Rakesh, P. Dhanasekaran, N.M. Gupta, Phys. Chem. Chem. Phys. 13, 11329 (2011)

    Article  CAS  Google Scholar 

  15. M. Dinari, M.M. Momeni, Z. Bozorgmehr, S. Karimi, J. Iran. Chem. Soc. 3, 1 (2016)

    Google Scholar 

  16. R. Ahmadkhani, A. Habibi-Yangjeh, J. Iran. Chem. Soc. 14, 863 (2017)

    Article  CAS  Google Scholar 

  17. S. George, S. Pokhrel, Z. Ji, B.L. Henderson, T. Xia, L. Li et al., J. Am. Chem. Soc. 133, 11270 (2011)

    Article  CAS  Google Scholar 

  18. A. Ryu, S.-W. Jeong, A. Jang, H. Choi, Appl. Catal. B Environ. 105, 128 (2011)

    Article  CAS  Google Scholar 

  19. L. Yao, L. Zhuang, Z. Yao, L. Han, C. Han, J. Iran. Chem. Soc. 13, 2185 (2016)

    Article  CAS  Google Scholar 

  20. M. Moradi, F. Ghanbari, M. Manshouri, K.A. Angali, Korean J. Chem. Eng. 33, 539 (2016)

    Article  CAS  Google Scholar 

  21. R. Hazime, Q.H. Nguyen, C. Ferronato, A. Salvador, F. Jaber, J.-M. Chovelon, Appl. Catal. B Environ. 144, 286 (2014)

    Article  CAS  Google Scholar 

  22. I. Velo-Gala, J.J. López-Peñalver, M. Sánchez-Polo, J. Rivera-Utrilla, Chem. Eng. J. 241, 504 (2014)

    Article  CAS  Google Scholar 

  23. C. Liang, H.-W. Su, Ind. Eng. Chem. Res. 48, 5558 (2009)

    Article  CAS  Google Scholar 

  24. G. Mele, E. Garcìa-Lòpez, L. Palmisano, G. Dyrda, R. Slota, J. Phys. Chem. C 111, 6581 (2007)

    Article  CAS  Google Scholar 

  25. C. Wang, G. Yang, J. Li, G. Mele, R. Słota, M.A. Broda et al., Dyes Pigments 80, 321 (2009)

    Article  CAS  Google Scholar 

  26. Q. Sun, Y. Xu, J. Phys. Chem. C 113, 12387 (2009)

    Article  CAS  Google Scholar 

  27. M. Bordbar, S. Jafari, A. Yeganeh-Faal, B. Khodadadi, J. Iran. Chem. Soc. 14, 897 (2017)

    Article  CAS  Google Scholar 

  28. M.M. Momeni, Y. Ghayeb, J. Iran. Chem. Soc. 13, 481 (2016)

    Article  CAS  Google Scholar 

  29. C. Chen, P. Liu, C. Lu, Chem. Eng. J. 144, 509 (2008)

    Article  CAS  Google Scholar 

  30. M.C. Rand, A.E. Greenberg, M.J. Taras, Prepared and published jointly by (American Public Health Association, American Water Works Association, and Water Pollution Control Federation, 1976)

  31. C. Ricardo, T. Tarley, G. Silveira, W. Nei, G. Domingues, E. Galvão, Microchem. J. 92, 58 (2009)

    Article  Google Scholar 

  32. K.-H. Wang, Y.H. Hsieh, C.H. Wu, C.Y. Chang, Chemosphere 40, 389 (2000)

    Article  CAS  Google Scholar 

  33. N. Daneshvar, S. Aber, M.S. Dorraji, A. Khataee, M. Rasoulifard, IJMME 1, 62 (2007)

    Google Scholar 

  34. M. Kosmulski, J. Colloid Interface Sci. 337, 439 (2009)

    Article  CAS  Google Scholar 

  35. C.-H. Chiou, C.-Y. Wu, R.-S. Juang, Sep. Purif. Technol. 62, 559 (2008)

    Article  CAS  Google Scholar 

  36. L. Wei, H. Zhu, X. Mao, F. Gan, Sep. Purif. Technol. 77, 18 (2011)

    Article  CAS  Google Scholar 

  37. M. Khatamian, A.A. Khandar, B. Divband, M. Haghighi, S. Ebrahimiasl, J. Mol. Catal. A Chem. 365, 120 (2012)

    Article  CAS  Google Scholar 

  38. E. García-Ramírez, M. Mondragón-Chaparro, O. Zelaya-Angel, Appl. Phys. A 108, 291 (2012)

    Article  Google Scholar 

  39. E. Bizani, K. Fytianos, I. Poulios, V. Tsiridis, J. Hazard. Mater. 136, 85 (2006)

    Article  CAS  Google Scholar 

  40. V. Augugliaro, V. Loddo, G. Palmisano, M. Pagliaro, L. Palmisano, Clean by Light Irradiation: Practical Applications of Supported TiO 2 (Royal Society of Chemistry, London, 2010)

    Google Scholar 

  41. C.L. Clifton, R.E. Huie, Int. J. Chem. Kinet. 21, 677 (1989)

    Article  CAS  Google Scholar 

  42. A. Mills, M.A. Valenzuela, J. Photochem. Photobiol. A Chem. 165, 25 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Razi University Research Council for support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Joshaghani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joshaghani, M., Yazdani, D. & Zinatizadeh, A. Statistical modeling of p-nitrophenol degradation using a response surface methodology (RSM) over nano zero-valent iron-modified Degussa P25-TiO2/ZnO photocatalyst with persulfate. J IRAN CHEM SOC 14, 2449–2456 (2017). https://doi.org/10.1007/s13738-017-1179-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-017-1179-9

Keywords

Navigation