Skip to main content
Log in

Preparation and characterization of in situ carbon paste and screen-printed potentiometric sensors for determination of econazole nitrate: surface analysis using SEM and EDX

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

The construction and performance characteristics of new sensitive and selective in situ carbon paste (ICPE) and screen-printed (ISPE) potentiometric sensors modified with ion-pairing agents such as phosphotungstic acid, sodium tetraphenylborate, phosphomolybdic acid and ammonium reineckate for determination of econazole nitrate (ECN) have been developed. The reaction mechanism between ECN and ion-pairing agents at the electrode surface was studied through scanning electron microscope and energy-dispersive X-ray analysis. The electrodes under investigation showed potentiometric response for ECN in the concentration range from 1.0 × 10−6 to 5.0 × 10−3 mol L−1 and from 1.0 × 10−6 to 1.0 × 10−2 mol L−1 for ISPE (electrode I) and ICPE (electrode II) potentiometric sensors, respectively, at 25 °C. The electrode response was pH independent in the range 2.5–7.5 and 2.5–6.5 for electrodes I and II, respectively. These sensors have Nernstian slope values of 59.4 ± 0.2 and 59.10 ± 0.2 mV decade−1 with detection limit of 1.0 × 10−6 mol L−1 for electrodes I and II, respectively. The electrodes showed fast response time of 4 and 9 s for electrodes I and II, respectively. The ISPE (electrode I) showed lifetime of 28 days, and this was considered as advantage over ICPE (electrode II). Selectivity for ECN with respect to a number of interfering materials was also investigated. The proposed electrodes were applied for determination of ECN in pure and pharmaceutical formulation using calibration, potentiometric titration and standard addition methods. The results showed good agreement with those obtained using official method. The t and F values indicated no significant difference between the suggested and reported methods. Method validation parameters were optimized according to ICH recommendations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. United States Pharmacopeia. 40th ed., NF35 (2), 3937–3938, (2017)

  2. M. Massaccesi, Analyst 111, 987 (1986)

    Article  CAS  Google Scholar 

  3. S.R. El-Shabouri, K.M. Emara, P.Y. Khashaba, A.M. Mohamed, Anal. Lett. 31, 1367 (1998)

    Article  CAS  Google Scholar 

  4. P.Y. Khashaba, S.R. El-Shabouri, K.M. Emara, A.M. Mohamed, J. Pharm. Biomed. Anal. 22, 363–376 (2000)

    Article  CAS  Google Scholar 

  5. Y. Xia, X. Zhi, X. Wang, M. Chen, J. Cheng, Anal. Bioanal. 3(402), 1241–1247 (2012)

    Article  Google Scholar 

  6. D. Bonazzi, V. Cavrini, R. Gatti, E. Boselli, M. Caboni, J. Pharm. Biomed. Anal. 18, 235 (1998)

    Article  CAS  Google Scholar 

  7. V. Cavrini, A.M. Di Pietra, R. Gatti, J. Pharm. Biomed. Anal. 7, 1535 (1989)

    Article  CAS  Google Scholar 

  8. X.L. Yang, Z.F. Xi, J.F. Sheng, Chin. J. Antibiot. 29, 403 (2004)

    CAS  Google Scholar 

  9. L. Gagliardi, D. De Orsi, P. Chimenti, R. Porra’, D. Tonelli, Anal. Sci. 19, 1195 (2003)

    Article  CAS  Google Scholar 

  10. M.B. Mostafa, S.B. Tarek, S.M. Mohamed, M.A. Hytham, G.D. Hoda, Anal. Methods 8, 2185–2200 (2016)

    Article  Google Scholar 

  11. A.M. Di Pietra, V. Andrisano, R. Gotti, V. Cavrini, J. Pharm. Biomed. Anal. 14, 1191 (1996)

    Article  Google Scholar 

  12. A.A. Gaona-Galdos, L.G. Pedro, S.A.P. María, I.R.M.S. Maria, R.M.K.H. Érika, Talanta 77, 673–678 (2008)

    Article  CAS  Google Scholar 

  13. A.A. Gaona-Galdos, L.A. Zanolli Filho, Chromatography A 1192(2), 301–305 (2008)

    Article  CAS  Google Scholar 

  14. E. Kublin, T. Kaniewska, Chem. Anal. 41, 19 (1996)

    CAS  Google Scholar 

  15. G. Popovic, M. Cakar, K. Vucicevic, S. Vladimirov, D. Agbaba, J. Planar Chromatogr. Mod. TLC 17, 109 (2004)

    Article  CAS  Google Scholar 

  16. A. Arranz, C. Echevarria, J.M. Moreda, A. Cid, J.F. Arranz, J. Chromatogr. A 871, 399 (2000)

    Article  CAS  Google Scholar 

  17. K. Vytras, Ion-Sel Electrodes Rev 7, 77–164 (1985)

    Article  CAS  Google Scholar 

  18. H. Hayashi, J.B. Moffat, Talanta 29, 943 (1982)

    Article  CAS  Google Scholar 

  19. T.G. Towns, Anal. Chem. 58, 223 (1986)

    Article  CAS  Google Scholar 

  20. W. Selig, Talanta 27, 914 (1980)

    Article  CAS  Google Scholar 

  21. F.A. Nour El-Dien, G.G. Mohamed, E.Y.Z. Frag, M.M. El-Badry, Int. J. Electrochem. Sci. 7, 10266–10281 (2012)

    Google Scholar 

  22. E.Y.Z. Frag, G.G. Mohamed, W.G. El-Sayed, Bioelectrochemistry 82(2), 79–86 (2011)

    Article  CAS  Google Scholar 

  23. M.A. Akl, E.Y.Z. Frag, G.G. Mohamed, M.S.A. Bashanaini, Int. J. Electrochem. Sci. 8, 11546–11563 (2013)

    CAS  Google Scholar 

  24. G.G. Mohamed, F.A. Nour El-Dien, E.Y.Z. Frag, M.M. El-Badry, J. Pharm. Anal. 3(5), 367–375 (2013)

    Article  CAS  Google Scholar 

  25. E.Y.Z. Frag, G.G. Mohamed, H.M.S. Alelaiwi, J. Electroanal. Chem. 659(2), 121–127 (2011)

    Article  CAS  Google Scholar 

  26. I. Svancara, K. Vytras, Chem. Listy 88, 138–146 (1994)

    CAS  Google Scholar 

  27. K. Sandeep, B. Rahul, K. Sanjeev, K.M. Susheel, S. Pritpal, RSC Adv. 6, 3150 (2016)

    Article  Google Scholar 

  28. M.T. Alyushin, L.V. Moshkova, I.S. Gritsaenko, S.S. Mogil’naya, D.K.H. Khrenova, L.N. Shcherbakova, Farmatsiya 42(2), 4–6 (1993)

    Google Scholar 

  29. M.R. Ganjali, Z. Memari, F. Faridbod, P. Norouzi, Int. J. Electrochem. Sci. 3, 1169–1179 (2008)

    CAS  Google Scholar 

  30. V.K. Gupta, S. Chandra, R. Mangla, Sens. Actuators, B 86, 235 (2002)

    Article  CAS  Google Scholar 

  31. V.K. Gupta, R. Prasad, A. Kumar, Talanta 63, 1027 (2004)

    Article  CAS  Google Scholar 

  32. A.K. Jain, V.K. Gupta, S. Radi, L.P. Singh, J.R. Raisoni, Electrochim. Acta 51, 2547 (2006)

    Article  CAS  Google Scholar 

  33. B. Eric, Electroanalysis 9(1), 7–12 (1997)

    Article  Google Scholar 

  34. Y. Umezawa, P. Buhlmann, K. Umezawa, K. Tohda, S. Amemiya, Pure Appl. Chem. 72(10), 1851–2082 (2000)

    Article  CAS  Google Scholar 

  35. K. Tohda, D. Dragoe, M. Shibata, Y. Umezawa, Anal. Sci. 17, 733–743 (2001)

    Article  CAS  Google Scholar 

  36. R.P. Buck, E. Lindner, IUPAC Recommendation 1994. Pure Appl. Chem. 66, 2527–2536 (1994)

    Article  CAS  Google Scholar 

  37. Y. Umezawa, K. Umezawa, H. Sato, Pure Appl. Chem. 67, 507–510 (1995)

    Article  Google Scholar 

  38. L.I. Antropov, Theo. Electrochem., Mir Publisher, Moscow, (1977)

  39. P.B. Richard, Anal. Chem. 46(5), 28–51 (1974)

    Article  Google Scholar 

  40. British Pharmacopoeia 1, 851 (2017)

  41. M. Gumustas, A.S. Ozkan, Open Anal. Chem. J. 5, 1–21 (2011)

    Article  CAS  Google Scholar 

  42. ICH Harmonized Tripartite Guideline: Validation of analytical procedures. Text and methodology. International conference on harmonisation of technical requirements for registration of pharmaceuticals for human use, Q2(R1), (2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eman Y. Frag.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frag, E.Y., Mohamed, M.EB. & Salem, H.S. Preparation and characterization of in situ carbon paste and screen-printed potentiometric sensors for determination of econazole nitrate: surface analysis using SEM and EDX. J IRAN CHEM SOC 14, 2355–2365 (2017). https://doi.org/10.1007/s13738-017-1171-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-017-1171-4

Keywords

Navigation