Journal of the Iranian Chemical Society

, Volume 14, Issue 8, pp 1741–1752 | Cite as

The kinetic and thermodynamic study of the removal of Cr(VI) ion from aqueous solution by human hair waste

  • Fereshteh Abbasi
  • Abdolhadi FarrokhniaEmail author
  • Mehrdad Bamdad
  • Roaya Mirzajani
Original Paper


The removal of Cr(VI) ions from aqueous solution by human hair waste is investigated by using UV–Vis spectrophotometer technique. The morphological analysis of the human hair was also investigated by the scanning electron microscopy, Fourier transforms infrared spectroscopy and X-ray photoelectron spectroscopy. The influence of various physicochemical effective parameters such as pH, ionic strength, adsorbent amount, contact time, initial concentration of metal ion on removal of Cr(VI) ions by human hair process was also studied. The optimum conditions for this adsorption process were obtained at pH = 2 and contact time of 150 min while the highest Cr(VI) uptake is recorded for 0.5 g of the adsorbent per 100 ml of solution. Three isotherms models including Langmuir, Freundlich and Temkin were applied to describe the equilibrium data. It was found that the experimental data were well described by Freundlich isothermal model. The maximum adsorption capacity was found to be 11.64 mg g−1.The thermodynamic study data showed that the adsorption process of Cr(VI) on human hair is an endothermic, spontaneous and physisorption reaction. The kinetics of the adsorption process was studied using three kinetics models including Lagergren-first-order, pseudo-second-order and Elovich model. The obtained data are indicated that the adsorption processes of Cr(VI) over human hair could be described by the pseudo-second-order kinetic model.


Adsorption isotherm Cr(VI) Human hair Removal Kinetic model 


Compliance with ethical standards

Conflict of interest

The author declares that they have no conflict of interest.


  1. 1.
    R. Khosravi, M. Fazlzaehdavil, B. Barikbin, A.A. Taghizadeh, Appl. Surf. Sci. 292, 670 (2014)CrossRefGoogle Scholar
  2. 2.
    S. Aghajani, A. Afkhami, M. Mohseni, T. Madrakian, J. Iran. Chem. Soc. 12(11), 2007 (2015)CrossRefGoogle Scholar
  3. 3.
    Y. Zhao, S.Yangh, D. Ding, J.Chen, Y. Yang, Z. Lei, C. Feng, Z. Zhang, J. Colloid. Interf. Sci, 395, 198 (2013)Google Scholar
  4. 4.
    W. Cao, Z. Dang, X.Y. Yi, C. Yang, G.N. Lu, Y.F. Liu, S.Y. Huang, L.C. Zheng, Environ. Tecchnol. 34(1), 7 (2013)CrossRefGoogle Scholar
  5. 5.
    J. Xie, X. Gu, F. Tong, Y. Zhao, Y. Tan, J. Colloid. Interface Sci 455, 55 (2015)CrossRefGoogle Scholar
  6. 6.
    S. Hojati, A.R. Esfahani, A. Azimi, M. Farzadian, J. Taiwan Inst. Chem. Eng 49, 172 (2015)CrossRefGoogle Scholar
  7. 7.
    Z. Huang, X.l. Wang, D. Yang, Water. Sci. Eng. 8(3), 226 (2015)Google Scholar
  8. 8.
    R.J. Santhi, V. Vetriselvi, Water Resour. Ind. 10, 39 (2015)CrossRefGoogle Scholar
  9. 9.
    S.H. Araghi, M. Entezari, M. Chamsaz, Microporous Mesoporous Mater. 218, 101 (2015)CrossRefGoogle Scholar
  10. 10.
    M.Cieslak-Golonka, Polyhedron Report NO. 61, 15, 3667 (1995)Google Scholar
  11. 11.
    Y. Xie, H. Li, X. Wang, I.S. Ng, Y. Lu, K. Jing, J. Taiwan Inst. Chem. Eng 45, 1773 (2014)CrossRefGoogle Scholar
  12. 12.
    M. Rajasimman, P. Karthic, J. Taiwan Inst. Chem. Eng 41, 105 (2010)CrossRefGoogle Scholar
  13. 13.
    E. Malkoc, Y. Nuhojlu, M. Dundar, J. Hazard. Mater, B 138, 142 (2006)CrossRefGoogle Scholar
  14. 14.
    M. Dakiky, M. Khamis, A. Manassra, M. Mer, eb. Adv. Environ. Res. 6, 533 (2002)CrossRefGoogle Scholar
  15. 15.
    J. Wu, H. Zhang, P.J. He, Q. Yao, L.M. Shao, J. Hazard. Mater. 176, 697 (2010)CrossRefGoogle Scholar
  16. 16.
    S.P. Dubey, K. Gopal, J. Hazard. Mater. 145, 465 (2007)CrossRefGoogle Scholar
  17. 17.
    S. Kumar, B.C. Meikap, Desalination Water. Treat 52, 3122–3132 (2014)CrossRefGoogle Scholar
  18. 18.
    B. Bhushan, Progress. Mater. Sci. 53, 585 (2008)Google Scholar
  19. 19.
    A. Gupta, J. Waste. Manag. 2014, 1 (2014)Google Scholar
  20. 20.
    A. Ghosh, S.R. Collie, Def. Sci. J 64(3), 209 (2014)CrossRefGoogle Scholar
  21. 21.
    B.C. Beard, J. Hare, J. Surfactants Deterg. 2, 145 (2002)CrossRefGoogle Scholar
  22. 22.
    I. Efremenko, R. Zach, Y. Zeiri, J. Phys. Chem, C 111, 11903 (2007)CrossRefGoogle Scholar
  23. 23.
    A.S. Ekop, N.O. Eddy, J. Chem. 7(4), 1296 (2010)Google Scholar
  24. 24.
    L. Mahdavian, Afr. J. Microbiol. Res 6(1), 183 (2012)Google Scholar
  25. 25.
    ASTM, Standard Test Methods for Chromium in Water. Annual Book of ASTM Standards, D1687-02 (2007)Google Scholar
  26. 26.
    M. Okamoto, K. Ishikawa, N. Tanji, S. Aoyagi, Surf. Interface Anal. 44, 736 2011Google Scholar
  27. 27.
    N. Tahri Joutey, H. Sayel, W. Bahafid, N. El-Ghachtouli, Rev. Environ. Contam. Toxicol. 233, 45 (2015)Google Scholar
  28. 28.
    E. Aranda-Garcia, L. Morales- Barrera, G. Pineda-Camacho, E. Cristiani-Urbina, Environ. Monit. Assess. 186, 6207 (2014)Google Scholar
  29. 29.
    S. Lagergren, Kungliga Sven. Vetensk. Psakademiens Handlingar 24(4), 1 (1898)Google Scholar
  30. 30.
    Y.S. Ho, G.M. Kay, Inst. Chem. Eng. B 76, 332 (1998)Google Scholar
  31. 31.
    M.J.D. Low, Chem. Rev. 60(3), 267 (1960)CrossRefGoogle Scholar
  32. 32.
    W.J. Weber, J.C. Morris, J. Sanit, J. Sanit. Eng. Div. 89, 31 (1963)Google Scholar
  33. 33.
    L. Langmuir, J. Am. Chem. Soc. 40, 1361 (1918)CrossRefGoogle Scholar
  34. 34.
    H.M.F. Freundlich, J. Phys. Chem. 57, 385 (1906)Google Scholar
  35. 35.
    M.I. Temkin, V. Pyzhev, Acta Physiochim USSR 12, 327 (1940)Google Scholar
  36. 36.
    P. S. Blanes, M. E. Bordoni, J. C. Gonzalez, S. I. Garcia, A. M. Atria, L. F. Sala, S. E. Bellu, J. Environ. Chem. Eng. 4, 516 (2016)Google Scholar

Copyright information

© Iranian Chemical Society 2017

Authors and Affiliations

  1. 1.Department of Chemistry, College of ScienceShahid Chamran University of AhvazAhvazIran

Personalised recommendations