Skip to main content

Advertisement

Log in

Influence of the post-synthesis method on the number and size of secondary mesoporous structure of NaY zeolite and its effect on catalyst loading. An efficient and eco-friendly catalyst for synthesis of xanthenes under conventional heating

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Several identification techniques have been used to study the effect of the preparation method of dealuminated Y zeolite on catalyst loading. In this paper, NaY zeolite was dealuminated by chemical operation with ethylenediaminetetraacetic acid (H4EDTA) treatment. In this method, extra-framework aluminum species removed from the supercage of zeolite and therefore increases the Si/Al ratio and pore volume. Consequently, the loading of the molybdophosphoric acid (MPA) in the supercage of zeolite is increases (0.1 g/g equal 0.049 mmol/g support) in EDTA treatment (MPA-MDAZY) in comparison with (0.0875 g/g equal 0.043 mmol/g support) in hydrothermal method (MPA-DAZY). These results were also confirmed by XRF, AAS, FTIR, SEM, BET, XRD and WDX analysis. Reducing of the reaction time and increasing of the catalytic activity of EDTA treatment toward hydrothermal method can be related to the high catalyst loading based on removing of extra-framework aluminum. The catalytic activity of two catalysts has been compared in the xanthenes synthesis reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 3

Similar content being viewed by others

References

  1. N. Mizuno, M. Misono, Chem. Rev. 98, 199–217 (1998)

    Article  CAS  Google Scholar 

  2. L. Marosi, C.O. Areán, J. Catal. 213, 235–240 (2003)

    Article  CAS  Google Scholar 

  3. J. Wang, Z. Lin, S.Y. Han, M. Eum, C.W. Lee, J. Ind. Eng. Chem. 9, 281–286 (2003)

    CAS  Google Scholar 

  4. A. Thomas, C. Dablemont, J. Basset, F. Lefebvre, C. R. Chimie. 8, 1969–1974 (2005)

    Article  CAS  Google Scholar 

  5. L. Shen, Y. Feng, H. Yin, A. Wang, L. Yu, T. Jiang, Y. Shen, Z. Wu, J. Ind. Eng. Chem. 17, 484–492 (2011)

    Article  CAS  Google Scholar 

  6. E. O-Islas, T. López, R. Gómez, J. Navarrete, D.H. Aguilar, P. Quintana, M. Picquart, Appl. Surf. Sci. 252, 839–846 (2005)

    Article  Google Scholar 

  7. A.V. Ivanov, T.V. Vasina, V.D. Nissenbaum, L.M. Kustov, M.N. Timofeeva, J.I. Houzvicka, Appl. Catal. A: Gen. 259, 65–72 (2004)

    Article  CAS  Google Scholar 

  8. S. Anandan, S.Y. Ryu, W. Cho, M. Yoon, J. Mol. Catal. A: Chem. 195, 201–208 (2003)

    Article  CAS  Google Scholar 

  9. B.R. Jermy, A. Pandurangan, Appl. Catal. A: Gen. 295, 185–192 (2005)

    Article  CAS  Google Scholar 

  10. J. Haber, K. Pamin, J. Połtowicz, J. Mol. Catal. A: Chem. 224, 153–159 (2004)

    Article  CAS  Google Scholar 

  11. B. Sulikowski, R. Rachwalik, Appl. Catal. A: Gen. 256, 173–182 (2003)

    Article  CAS  Google Scholar 

  12. M. Ahmad, S.M.J. Zaidi, S.U. Rahman, S. Ahmad, Micropor. Mesopor. Mater. 91, 296–304 (2006)

    Article  CAS  Google Scholar 

  13. A. Angelis, S. Amarilli, D. Berti, L. Montanari, C. Perego, J. Mol. Catal. A: Chem. 146, 37–44 (1999)

    Article  Google Scholar 

  14. H. Kim, J.C. Jung, S.H. Yeom, K.Y. Lee, I.K. Song, J. Mol. Catal. A: Chem. 248, 21–25 (2006)

    Article  CAS  Google Scholar 

  15. P. He, B. Xu, X. Xu, L. Song, X. Wang, Chem. Sci. 7, 1011–1015 (2016)

    Article  CAS  Google Scholar 

  16. J.W. Zhao, Y.Z. Li, L.J. Chen, G.Y. Yang, Chem. Commun. 52, 4418–4445 (2016)

    Article  CAS  Google Scholar 

  17. X. Xu, S. Chen, Y. Chen, H. Sun, L. Song, W. He, X. Wang, Small (2016). doi:10.1002/Small.201503695

    Google Scholar 

  18. S. Rayati, F. Salehi, J. Iran. Chem. Soc. 12, 309–315 (2015)

    Article  CAS  Google Scholar 

  19. M. Moosavifar, A.N. Arbat, Z. Rezvani, K. Nejati, Chin. J. Catal 36, 1719–1725 (2015)

    Article  CAS  Google Scholar 

  20. S.R. Mukai, T. Masuno, I. Ogina, K. Hashimoto, Appl. Catal. A: Gen. 165, 219–226 (1997)

    Article  CAS  Google Scholar 

  21. J. Wang, D. Jiang, J.O. Baeg, C.W. Lee, J. Ind. Eng. Chem. 10, 454–459 (2004)

    CAS  Google Scholar 

  22. H.V. Bekkum, E.M. Flanigen, P.A. Jacobs, J.C. Jansen (eds.), Introduction to Zeolite Science and Practice, 2nd edn. (Elsevier Science, 2001), p. 150

  23. M. Moghadam, S. Tangestaninejad, V. Mirkhani, I. Mohammadpoor-Baltork, M. Moosavifar, Appl. Catal. A Gen. 358, 157–163 (2009)

    Article  CAS  Google Scholar 

  24. F. Shirini, M. Abedini, S. Akbari-Dadamahaleh, A. Rahmaninia, J. Iran. Chem. Soc. 11, 791–824 (2014)

    Article  CAS  Google Scholar 

  25. M. Moghadam, S. Tangestaninejad, V. Mirkhani, I. Mohammadpoor-Baltork, M. Moosavifar, C. R. Chimie. 14, 489–495 (2011)

    Article  CAS  Google Scholar 

  26. M. Moosavifar, S. Tangestaninejad, M. Moghadam, V. Mirkhani, I. Mohammadpoor-Baltork, C. R. Chimie. 14, 953–956 (2011)

    Article  CAS  Google Scholar 

  27. B. Sulikowski, J. Phys. Chem. 97, 1420–1425 (1993)

    Article  CAS  Google Scholar 

  28. A. Zhang, C. Li, S. Bao, Q. Xu, Micropor. Mesopor. Mat. 29, 383–388 (1999)

    Article  CAS  Google Scholar 

  29. V. Solinas, I. Ferino, Catal. Today 41, 179–189 (1998)

    Article  CAS  Google Scholar 

  30. Z. Mehraban, F. Farzaneh, Micropor. Mesopor. Mat. 88, 84–90 (2006)

    Article  CAS  Google Scholar 

  31. A. Derkowski, W. Franus, H.W. Nowicka, A. Czímerová, Int. J. Miner. Process. 82, 57–68 (2007)

    Article  CAS  Google Scholar 

  32. G. Øye, J. Sjöblom, M. Stöcker, Adv Colloid Interf. Sci. 89–90, 439–466 (2001)

    Article  Google Scholar 

  33. Q.-H. Xia, K. Hidajat, S. Kawi, Mater. Lett. 42, 102–107 (2000)

    Article  CAS  Google Scholar 

  34. M. Moosavifar, S. Tangestaninejad, M. Moghadam, V. Mirkhani, I. Mohammadpoor Baltork, J. Mol. Catal. A: Chem. 377, 92–101 (2013)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Moosavifar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moosavifar, M., Fathyunes, L. Influence of the post-synthesis method on the number and size of secondary mesoporous structure of NaY zeolite and its effect on catalyst loading. An efficient and eco-friendly catalyst for synthesis of xanthenes under conventional heating. J IRAN CHEM SOC 13, 2113–2120 (2016). https://doi.org/10.1007/s13738-016-0929-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-016-0929-4

Keywords

Navigation