Skip to main content
Log in

Biomimetic electrochemical sensor based on molecularly imprinted polymer for dicloran pesticide determination in biological and environmental samples

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Dicloran pesticide is used to inhibit the fungal spore germination for different crops. Because of the increasing application of pesticides, reliable and accurate analytical methods are necessary. The aim of this work is designing the highly selective sensor to determine the dicloran in biological and environmental samples. Multi-walls carbon nanotubes and a molecularly imprinted polymer (MIP) were used as modifiers in the sensor composition. A dicloran MIP and a nonimprinted polymer (NIP) were synthesized and applied in the carbon paste electrode. After the optimization of electrode composition, it was used to determine the concentration of analyte. Parameters affecting the sensor response were optimized, such as sample pH, electrolyte concentration and its pH, and the instrumental parameters of square wave voltammetry. The MIP-CP electrode showed very high recognition ability in comparison with NIP-CP. The obtained linear range was 1 × 10−6 to 1 × 10−9 mol L−1. The detection limit was 4.8 × 10−10 mol L−1. This sensor was used to determine the dicloran in real samples (human urine, tap and river water samples) without special sample preparation before analysis. All important parameters were optimized, improving the sensor response considerably.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. C. Bolognesi, G. Morasso, Trends Food Sci. Technol. (2000). doi:10.1016/S0924-2244(00)00060-1

    Google Scholar 

  2. M. Stoytcheva, Pesticides—Strategies for Pesticides Analysis, 1st edn. (InTech, Rijeka, 2011). doi:10.5772/565

    Book  Google Scholar 

  3. United States Environmental Protection Agency (US-EPA), Reregistration Eligibility Decision for DCNA (Dicloran). EPA-738-F-05-003 (2006)

  4. R. Rouabhi, in Fungicides, ed. by O. Carisse (InTech, Rijeka, 2010), p. 363. doi:10.5772/12967

    Google Scholar 

  5. M. Ahmed Azmi, S.N.H. Naqvi, in Pesticides—The Impacts of Pesticides Exposure, ed. by M. Stoytcheva (InTech, Rijeka, 2011), pp. 1–24. doi:10.5772/1003

    Google Scholar 

  6. M.R.C. Massaroppi, S.A.S. Machado, L.A. Avaca, J. Braz. Chem. Soc. (2003). doi:10.1590/S0103-50532003000100018

    Google Scholar 

  7. M.S. Lin, B.I. Jan, H.J. Leu, J.S. Lin, Anal. Chim. Acta (1999). doi:10.1016/S0003-2670(99)00026-4

    Google Scholar 

  8. M.A. El-Mhammedi, M. Bakasse, A. Chtaini, J. Hazard. Mater. (2007). doi:10.1016/j.jhazmat.2007.02.054

    Google Scholar 

  9. Z. Meng, Y. Ma, Microchem. J. (1996). doi:10.1006/mchj.1996.0053

    Google Scholar 

  10. A.M. Carro, R.A. Lorenzo, Analyst (2001). doi:10.1039/B009910O

    Google Scholar 

  11. E.N. Efremenko, V.S. Sergeeva, Russ. Chem. Bull. (2001). doi:10.1023/A:1014377912147

    Google Scholar 

  12. R. Bhadekar, S. Pote, V. Tale, B. Nirichan, Am. J. Anal. Chem. (2011). doi:10.4236/ajac.2011.228118

    Google Scholar 

  13. A.N. Ivanov, G.A. Evtyugin, K.Z. Brainina, G.K. Budnikov, L.E. Stenina, J. Anal. Chem. (2002). doi:10.1023/A:1020985609601

    Google Scholar 

  14. T. Alizadeh, Electroanalysis (2009). doi:10.1002/elan.200804541

    Google Scholar 

  15. A.H. Kamel, F.T.C. Moreira, S.A.A. Almeida, M.G.F. Sales, Electroanalysis (2007). doi:10.1002/elan.200704039

    Google Scholar 

  16. T.P. Rao, K. Prasad, R. Kala, J.M. Gladis, Crit. Rev. Anal. Chem. (2007). doi:10.1080/10408340701244664

    Google Scholar 

  17. S. Wu, X. Lan, L. Cui, L. Zhang, S. Tao, H. Wang et al., Anal. Chim. Acta (2011). doi:10.1016/j.aca.2011.05.032

    Google Scholar 

  18. M. Rahiminezhad, S.J. Shahtaheri, M.R. Ganjali, A.R. Koohpaei, A.R. Forushani, F. Golbabaei, J. Anal. Chem. (2010). doi:10.1134/S1061934810070063

    Google Scholar 

  19. F. Omidi, M. Behbahani, H.S. Abandansari, A.R. Sedighi, S.J. Shahtaheri, J. Environ. Health Sci. Eng. (2014). doi:10.1186/s40201-014-0137-z

    Google Scholar 

  20. A.R. Koohpaei, S.J. Shahtaheri, M.R. Ganjali, A.R. Forushani, F. Golbabaei, Talanta (2008). doi:10.1016/j.talanta.2007.12.046

    Google Scholar 

  21. T. Alizadeh, M.R. Ganjali, P. Norouzi, M. Zare, A. Zeraatkar, Talanta (2009). doi:10.1016/j.talanta.2009.02.051

    Google Scholar 

  22. L. Wu, B. Sun, Y. Li, W. Chang, Analyst (2003). doi:10.1039/B212731H

    Google Scholar 

  23. Y. Dineiro, M.I. Menendez, M.C. Blanco-Lopez, M.J. Lobo-Castanon, A.J. Miranda-Ordieres, P. Tunon-Blanco, Anal. Chem. (2005). doi:10.1021/ac0513461

    Google Scholar 

  24. S.A. Piletsky, K. Karim, E.V. Piletska, C.J. Day, K.W. Freebairn, C. Legge, A.P.F. Turner, Analyst (2001). doi:10.1039/B102426B

    Google Scholar 

  25. R. Schirhagl, U. Latif, F.L. Dickert, J. Mater. Chem. (2011). doi:10.1039/c1jm11576f

    Google Scholar 

  26. M. Javanbakht, S. EynollahiFard, M. Abdouss, A. Mohammadi, M.R. Ganjali, P. Norouzi, L. Safaraliee, Electroanalysis (2008). doi:10.1002/elan.200804284

    Google Scholar 

  27. P. Norouzi, V.K. Gupta, B. Larijani, M.R. Ganjali, F. Faridbod, Talanta (2014). doi:10.1016/j.talanta.2014.03.061

    Google Scholar 

  28. Y. Ni, P. Qui, S. Kokot, Anal. Chim. Acta (2004). doi:10.1016/j.aca.2004.04.007

    Google Scholar 

  29. A. Nezamzadeh, M.K. Amini, H. Faghihian, Int. J. Electrochem. Sci. 2, 583–594 (2007)

    CAS  Google Scholar 

Download references

Acknowledgments

This research has been supported by Tehran University of Medical Sciences grant (Project No. 21892). The authors acknowledge the University for all valuable supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Jamaleddin Shahtaheri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khadem, M., Faridbod, F., Norouzi, P. et al. Biomimetic electrochemical sensor based on molecularly imprinted polymer for dicloran pesticide determination in biological and environmental samples. J IRAN CHEM SOC 13, 2077–2084 (2016). https://doi.org/10.1007/s13738-016-0925-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-016-0925-8

Keywords

Navigation