Skip to main content
Log in

Molecularly imprinted polymer nanoparticles-based electrochemical sensor for determination of diazinon pesticide in well water and apple fruit samples

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this research, an electrochemical sensor based on molecularly imprinted polymer (MIP) nanoparticles for selective and sensitive determination of diazinon (DZN) pesticides was developed. The nanoparticles of diazinon imprinted polymer were synthesized by suspension polymerization and then used for modification of carbon paste electrode (CPE) composition in order to prepare the sensor. Cyclic voltammetry (CV) and square wave voltammetry (SWV) methods were applied for electrochemical measurements. The obtained results showed that the carbon paste electrode modified by MIP nanoparticles (nano-MIP-CP) has much higher adsorption ability for diazinon than the CPE based non-imprinted polymer nanoparticles (nano-NIP-CP). Under optimized extraction and analysis conditions, the proposed sensor exhibited excellent sensitivity (95.08 μA L μmol−1) for diazinon with two linear ranges of 2.5 × 10−9 to 1.0 × 10−7 mol L−1 (R 2 = 0.9971) and 1.0 × 10−7 to 2.0 × 10−6 mol L−1 (R 2 = 0.9832) and also a detection limit of 7.9 × 10−10 mol.L−1. The sensor was successfully applied for determination of diaznon in well water and apple fruit samples with recovery values in the range of 92.53–100.86 %.

Procedure for preparation of electrochemical sensor based on MIP nanoparticles for determination of diazinon

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rassaei L, Marken F, Sillanpaa M, Amiri M, Cirtiu CM, Sillanpaa M. Nanoparticles in electrochemical sensors for environmental monitoring. Trends Anal Chem. 2011;30(11):1704–15.

    Article  CAS  Google Scholar 

  2. Sohrabi MR, Jamshidi S, Esmaeilifar A. Cloud point extraction for determination of Diazinon: Optimization of the effective parameters using Taguchi method. Chemometr Intell Lab. 2012;110(1):49–54.

    Article  CAS  Google Scholar 

  3. Davoodi D, Hassanzadeh-Khayyat M, Rezaei MA, Mohajeri SA. Preparation, evaluation and application of diazinon imprinted polymers as the sorbent in molecularly imprinted solid-phase extraction and liquid chromatography analysis in cucumber and aqueous samples. Food Chem. 2014;158:421–8.

    Article  CAS  Google Scholar 

  4. Skoulika SG, Georgiou CA, Polissiou MG. FT-Raman spectroscopy—Analytical tool for routine analysis of diazinon pesticide formulations. Talanta. 2000;51(3):599–604.

    Article  CAS  Google Scholar 

  5. Cao H, Nam J, Harmon HJ, Branson DH. Spectrophotometric detection of organophosphate diazinon by porphyrin solution and porphyrin-dyed cotton fabric. Dyes Pigm. 2007;74(1):176–80.

    Article  CAS  Google Scholar 

  6. Sanchez M, Mendez R, Gomez X, Martin‐Villacorta J. Determination of diazinon and fenitrothion in environmental water and soil samples by HPLC. J Liq Chromatogr Relat Technol. 2003;26(3):483–97.

    Article  CAS  Google Scholar 

  7. Shayeghi M, Khoobdel M, Vatandoost H. Determination of organophosphorus insecticides (malathion and diazinon) residue in the drinking water. Pak J Biol Sci. 2007;10(17):2900–4.

    Article  CAS  Google Scholar 

  8. Salm P, Taylor PJ, Roberts D, de Silva J. Liquid chromatography–tandem mass spectrometry method for the simultaneous quantitative determination of the organophosphorus pesticides dimethoate, fenthion, diazinon and chlorpyrifos in human blood. J Chromatogr B. 2009;877(5):568–74.

    Article  CAS  Google Scholar 

  9. Inoue S, Saito T, Mase H, Suzuki Y, Takazawa K, Yamamoto I, et al. Rapid simultaneous determination for organophosphorus pesticides in human serum by LC–MS. J Pharm Biomed Anal. 2007;44(1):258–64.

    Article  CAS  Google Scholar 

  10. Rastrelli L, Totaro K, De Simone F. Determination of organophosphorus pesticide residues in Cilento (Campania, Italy) virgin olive oil by capillary gas chromatography. Food Chem. 2002;79(3):303–5.

    Article  CAS  Google Scholar 

  11. Fytianos K, Raikos N, Theodoridis G, Velinova Z, Tsoukali H. Solid phase microextraction applied to the analysis of organophosphorus insecticides in fruits. Chemosphere. 2006;65(11):2090–5.

    Article  CAS  Google Scholar 

  12. Jafari MT, Saraji M, Sherafatmand H. Polypyrrole/montmorillonite nanocomposite as a new solid phase microextraction fiber combined with gas chromatography–corona discharge ion mobility spectrometry for the simultaneous determination of diazinon and fenthion organophosphorus pesticides. Anal Chim Acta. 2014;814:69–78.

    Article  CAS  Google Scholar 

  13. Ahmadi F, Assadi Y, Hosseini SM, Rezaee M. Determination of organophosphorus pesticides in water samples by single drop microextraction and gas chromatography-flame photometric detector. J Chromatogr A. 2006;1101(1):307–12.

    Article  CAS  Google Scholar 

  14. Menezes Filho A, dos Santos FN, Pereira PAP. Development, validation and application of a method based on DI-SPME and GC–MS for determination of pesticides of different chemical groups in surface and groundwater samples. Microchem J. 2010;96(1):139–45.

    Article  CAS  Google Scholar 

  15. Chen P-S, Huang S-D. Determination of ethoprop, diazinon, disulfoton and fenthion using dynamic hollow fiber-protected liquid-phase microextraction coupled with gas chromatography–mass spectrometry. Talanta. 2006;69(3):669–75.

    Article  CAS  Google Scholar 

  16. Brun EM, Garces-Garcia M, Escuin E, Morais S, Puchades R, Maquieira A. Assessment of novel diazinon immunoassays for water analysis. Environ Sci Technol. 2004;38(4):1115–23.

    Article  CAS  Google Scholar 

  17. Zaruk D, Comba M, Struger J, Young S. Comparison of immunoassay with a conventional method for the determination of Diazinon® in surface waters. Anal Chim Acta. 2001;444(1):163–8.

    Article  CAS  Google Scholar 

  18. Garces-Garcia M, Brun EM, Puchades R, Maquieira A. Immunochemical determination of four organophosphorus insecticide residues in olive oil using a rapid extraction process. Anal Chim Acta. 2006;556(2):347–54.

    Article  CAS  Google Scholar 

  19. Pogacnik L, Franko M. Determination of organophosphate and carbamate pesticides in spiked samples of tap water and fruit juices by a biosensor with photothermal detection. Biosens Bioelectron. 1999;14(6):569–78.

    Article  CAS  Google Scholar 

  20. Mulchandani P, Chen W, Mulchandani A. Flow injection amperometric enzyme biosensor for direct determination of organophosphate nerve agents. Environ Sci Technol. 2001;35(12):2562–5.

    Article  CAS  Google Scholar 

  21. Everett WR, Rechnitz GA. Mediated bioelectrocatalytic determination of organophosphorus pesticides with a tyrosinase-based oxygen biosensor. Anal Chem. 1998;70(4):807–10.

    Article  CAS  Google Scholar 

  22. Martínez RC, Domínguez FB, Méndez JH, Martín PG. Electroanalytical determination of diazinon: direct current and differential pulse polarography and adsorptive stripping voltammetry. Electroanalysis. 1990;2(7):567–71.

    Article  Google Scholar 

  23. Erdogdu G. A sensitive voltammetric method for the determination of diazinon insecticide. J Anal Chem. 2003;58(6):569–72.

    Article  CAS  Google Scholar 

  24. de Albuquerque YDT, Ferreira LF. Amperometric biosensing of carbamate and organophosphate pesticides utilizing screen-printed tyrosinase-modified electrodes. Anal Chim Acta. 2007;596(2):210–21.

    Article  Google Scholar 

  25. Ly SY. Assay of diazinon pesticides in cucumber juice and in the deep brain cells of a live carp. Microchim Acta. 2008;163(3-4):283–8.

    Article  CAS  Google Scholar 

  26. Guziejewski D, Skrzypek S, Ciesielski W. Square wave adsorptive stripping voltammetric determination of diazinon in its insecticidal formulations. Environ Monit Assess. 2012;184(11):6575–82.

    Article  CAS  Google Scholar 

  27. Arvand M, Vaziri M, Zanjanchi M. Voltammetric characteristics of diazinon on carbon paste electrode modified with tris (ethylenediamine) cobalt (II) iodide. J Anal Chem. 2013;68(5):429–35.

    Article  CAS  Google Scholar 

  28. Taillefert M, Rozan TF. Electrochemical Methods for the Environmental Analysis of Trace Elements Biogeochemistry. In:  Environmental Electrochemistry. ACS Symposium Series; American Chemical Society: Washington, DC, 2002. pp. 2–14. doi:10.1021/bk-2002-0811.ch001.

  29. Milani Hosseini MR, Motaharian A. Electroanalytical determination of diazepam in tablet and human serum samples using a multiwalled carbon nanotube embedded molecularly imprinted polymer-modified carbon paste electrode. RSC Adv. 2015;5(99):81650–9.

    Article  CAS  Google Scholar 

  30. Alizadeh T, Zare M, Ganjali MR, Norouzi P, Tavana B. A new molecularly imprinted polymer (MIP)-based electrochemical sensor for monitoring 2, 4, 6-trinitrotoluene (TNT) in natural waters and soil samples. Biosens Bioelectron. 2010;25(5):1166–72.

    Article  CAS  Google Scholar 

  31. Alizadeh T, Ganjali MR, Akhoundian M. Fabrication of an Extra Sensitive Voltammetric Sensor Using Nanoparticles of Molecularly Imprinted Polymer for Determination of Ultra-Trace Promethazine in Plasma Sample. Int J Electrochem Sci. 2012;7:10427–41.

    CAS  Google Scholar 

  32. Tokonami S, Shiigi H, Nagaoka T. Review: micro-and nanosized molecularly imprinted polymers for high-throughput analytical applications. Anal Chim Acta. 2009;641(1):7–13.

    Article  CAS  Google Scholar 

  33. Wackerlig J, Lieberzeit PA. Molecularly imprinted polymer nanoparticles in chemical sensing–Synthesis, characterisation and application. Sens Actuator B-Chem. 2015;207:144–57.

    Article  CAS  Google Scholar 

  34. Alizadeh T, Ganjali MR, Akhoundian M. Synthesis and application of different nano-sized imprinted polymers for the preparation of promethazine membrane electrodes and comparison of their efficiencies. Int J Electrochem Sci. 2012;7:7655.

    CAS  Google Scholar 

  35. Alizadeh T, Akbari A. A capacitive biosensor for ultra-trace level urea determination based on nano-sized urea-imprinted polymer receptors coated on graphite electrode surface. Biosens Bioelectron. 2013;43:321–7.

    Article  Google Scholar 

  36. Li Y, Zhang L, Liu J, Zhou S-F, Al-Ghanim KA, Mahboob S, et al. A novel sensitive and selective electrochemical sensor based on molecularly imprinted polymer on a nanoporous gold leaf modified electrode for warfarin sodium determination. RSC Adv. 2016;6(49):43724–31.

    Article  CAS  Google Scholar 

  37. Zamora-Gálvez A, Ait-Lahcen A, Mercante LA, Morales-Narváez E, Amine A, Merkoçi A. Molecularly Imprinted Polymer-Decorated Magnetite Nanoparticles for Selective Sulfonamide Detection. Anal Chem. 2016;88(7):3578–84.

    Article  Google Scholar 

  38. Madrakian T, Haryani R, Ahmadi M, Afkhami A. A sensitive electrochemical sensor for rapid and selective determination of venlafaxine in biological fluids using carbon paste electrode modified with molecularly imprinted polymer-coated magnetite nanoparticles. J Iranian Chem Soc. 2016;13(2):243–51.

    Article  CAS  Google Scholar 

  39. Bayat M, Hassanzadeh-Khayyat M, Mohajeri SA. Determination of Diazinon Pesticide Residue in Tomato Fruit and Tomato Paste by Molecularly Imprinted Solid-Phase Extraction Coupled with Liquid Chromatography Analysis. Food Anal Methods. 2015;8(4):1034–41.

    Article  Google Scholar 

  40. Rahiminejad M, Shahtaheri S, Ganjali M, Forushani AR, Golbabaei F. Molecularly imprinted solid phase extraction for trace analysis of diazinon in drinking water. J Environ Health Sci. 2009;6(2):97–106.

    CAS  Google Scholar 

  41. Rahiminezhad M, Shahtaheri S, Ganjali M, Koohpaei A, Forushani AR, Golbabaei F. An experimental investigation of the molecularly imprinted polymers as tailor-made sorbents of diazinon. J Anal Chem. 2010;65(7):694–8.

    Article  CAS  Google Scholar 

  42. Sanagi MM, Salleh S, Ibrahim WAW, Naim AA. Determination of organophosphorus pesticides using molecularly imprinted polymer solid phase extraction. Malaysian J Anal Sci. 2011;15(2):175–83.

    Google Scholar 

  43. Sanagi MM, Salleh S, Ibrahim WAW, Naim AA, Hermawan D, Miskam M, et al. Molecularly imprinted polymer solid-phase extraction for the analysis of organophosphorus pesticides in fruit samples. J Food Compost Anal. 2013;32(2):155–61.

    Article  CAS  Google Scholar 

  44. Wang Y-L, Gao Y-L, Wang P-P, Shang H, Pan S-Y, Li X-J. Sol–gel molecularly imprinted polymer for selective solid phase microextraction of organophosphorous pesticides. Talanta. 2013;115:920–7.

    Article  CAS  Google Scholar 

  45. Zhao Y, Ma Y, Li H, Wang L. Composite QDs@ MIP nanospheres for specific recognition and direct fluorescent quantification of pesticides in aqueous media. Anal Chem. 2011;84(1):386–95.

    Article  Google Scholar 

  46. Pieda DC. Acid and base catalysed aqueous hydrolysis of the organophosphorus pesticide, diazinon. Ontario: Queen’s University Kingston; 2001. M.Sc. thesis.

    Google Scholar 

  47. Rezaei B, Foroughi-Dehnavi S, Ensafi AA. Fabrication of electrochemical sensor based on molecularly imprinted polymer and nanoparticles for determination trace amounts of morphine. Ionics. 2015;21(10):2969–80.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support of this work by the Electroanalytical Chemistry Research Centre of Iran University of Science and Technology and the Pharmaceutical Research Center of Mashhad University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Motaharian.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 323 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Motaharian, A., Motaharian, F., Abnous, K. et al. Molecularly imprinted polymer nanoparticles-based electrochemical sensor for determination of diazinon pesticide in well water and apple fruit samples. Anal Bioanal Chem 408, 6769–6779 (2016). https://doi.org/10.1007/s00216-016-9802-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9802-7

Keywords

Navigation