Skip to main content
Log in

Modeling of the electronic, optoelectronics, photonic and thermodynamics properties of 1,4-bis(3-carboxyl-3-oxo-prop-1-enyl) benzene molecule

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

The modeling of the molecule 1,4-bis(3-carboxyl-3-oxo-prop-1-enyl) benzene has been carried out to study the electronic, optoelectronics, photonic and thermodynamics properties using Hartree–Fock, density functional theory (B3LYP) and MP2 (Möller–Plesset perturbation theory second-order) with the 6-31G and 6-31+G** basis sets. The dipole moment (µ), polarizability (〈α〉), first hyperpolarizability (β mol), dielectric constant (ε), electric susceptibility (χ), refractive index (η) and thermodynamics properties of this molecule have been calculated using the same level of theory. The small values of ε, and LUMO–HOMO energy gap, and the high values of χ, η, MR, 〈α〉 and (β mol) show that the molecule has very good electronic, optoelectronic and photonic applications. The results of this study show that this molecule is an interesting pi-conjugated molecule whose electronic structure and properties can be regulated over a wide range by variation in backbone structure, by side group substitution, and through intramolecular hydrogen bonding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. H. Alyar, Rev. Adv. Mater. Sci. 34, 79–87 (2013)

    CAS  Google Scholar 

  2. H. Alyar, M. Bahat, E. Kasap, Z. Kantarci, Torsional barriers and nonlinear optical properties of 2-3-4-phenylpyridine molecules. Czech J. Phys. 56, 349–358 (2006)

    Article  CAS  Google Scholar 

  3. S. Arulmozhi, A.R.M. Victor, J. Madhavan, HOMO, LUMO analysis and first order hyperpolarizability of 2-amino-5-chloro benzophenone using computational methods. Chem. Sin. 2, 158–163 (2011)

    CAS  Google Scholar 

  4. C. Arunagiri, M. Arivazhagan, A. Subashini, Vibrational spectroscopic (FT-IR and FT-Raman), first-order hyperpolarizability, HOMO, LUMO, NBO, Mulliken charges and structure determination of 2-bromo-4-chlorotoluene. Spectra Acta A Mol. Biomol. Spectrosc. 79(2011), 1747–1756 (2011)

    Article  CAS  Google Scholar 

  5. C. Arunagiri, A. Subashini, M. Saranya, M.P. Thomas, Molecular structure, optimized geometry, HOMO–LUMO energy and Mulliken charges of a new schiff base 2-(naphtalen-2-yliminomethyl) phenol by ab initio and density functional theory calculations. Ind. J. Appl. Res. 3, 2249–2555 (2013)

    Google Scholar 

  6. Y. Atalay, D. Avci, A. Basoglu, Linear and non-linear optical properties of some donor–acceptor oxadiazoles by ab initio Hartree–Fock calculations. Struct. Chem. 19, 239–246 (2008)

    Article  CAS  Google Scholar 

  7. R.A. Baricatti, M.F. Rosa, J.D.S. Oliveira, Fotoquímica e fotofísica do ácido 1,4-bis(3-carbóxi-3-oxo-prop-1-enil) benzeno. Eclética Quimica Araraquara 29(2), 15–18 (2004)

    Google Scholar 

  8. A.D. Becke, Phys. Rev. A 38, 3098 (1988)

    Article  CAS  Google Scholar 

  9. R. Carrasco-velar, J.A. Padron, J. Galvez, J. Pharm. Sci. 7, 19–26 (2004)

    Google Scholar 

  10. M.A. Castro, S.J. Canuta, J. Phys. Rev. B 26, 4301 (1993)

    CAS  Google Scholar 

  11. B. Champagne, M. Spassova, Theoretical investigation on the polarizability and second hyperpolarizability of polysilole. Chem. Phys. Lett. 471, 111–115 (2009)

    Article  CAS  Google Scholar 

  12. L.T. Cheng, W. Tam, S.H. Stevenson, G.R. Meredith, G. Rikken, S.R. Marder, Experimental investigations of organic molecular nonlinear optical polarizabilities. Methods and results on benzene and stilbene derivatives. J. Phys. Chem. 95, 1063–1064 (1991)

    Google Scholar 

  13. M.F. Costa, A theoretical study of 1,4-bis(3-carboxyl-3-oxo-prop-1-enyl) benzene I. Semina 31(1), 31–36 (2010)

    Article  Google Scholar 

  14. S. Elleuch, H. Feki, Y. Abid, HF, MP2 and DFT calculations and spectroscopic study of the vibrational and conformational properties of N-diethylendiamine. Spectrochim. Acta A Mol. Biomol. Spectrosc. Amst. 68(3), 942–951 (2007)

    Article  CAS  Google Scholar 

  15. G.W. Ejuh, J.M. Ndjaka, Linear and non linear optical effects of pyrimethamine and sulfadoxine: ab initio and density functional study. Afr. Rev. Phys. 8(62) (2013)

  16. G.W. Ejuh, L.S. Taura, Linearity and non-linearity of photorefractive effect in materials using the band transport model. J. Niger. Assoc. Math. Phys. 20(1), 249–256 (2012)

    Google Scholar 

  17. G.W. Ejuh, J.M. Ndjaka, A.N. Singh, Study of the structures and physico-chemical properties of the molecules pyrimethamine and sulfadoxine by ab initio and DFT methods. Can. J. Pure Appl. Sci. 5(2), 1591–1632 (2011)

    Google Scholar 

  18. D.V. Fernando, A.S. David, T. Yoshinari, A. Xavier, R. Angel, G.L. Steven, J.R. John, J. Chem. Phys. 133, 034111 (2010)

    Article  Google Scholar 

  19. A. Ferraretto, R. Nunes, J. Luiz, F. Caires, O. Treu-Filho, M. Ionashiro, Synthesis, characterization, thermal behavior, and DFT calculation of solid 1,4-bis(3-carboxyl-3-oxo-prop-1-enyl) benzene of some trivalent lanthanides. J. Therm. Anal. Calorim. 118(1), 499–509 (2014)

    Article  CAS  Google Scholar 

  20. J.B. Foresman, A. Frisch, Exploring chemistry with electronic structure methods (Gaussian, Inc., Pittsburgh, 1996)

    Google Scholar 

  21. D. Freude, Chapter: Radiation. J. Spectrosc. 1–21 (2006)

  22. D. Freude, Chapter: Fields. J. Mol. Phys. (2005)

  23. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, T. Vreven Jr., K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Danniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople (Gaussian Inc, Wallingford CT, 2004)

  24. P. Gunter, Nonlinear optical effects and materials (Springer, Berlin, 2000)

    Book  Google Scholar 

  25. G. Herzberg, Electronic spectra and electronic structure of polyatomic molecules (Van Nostrand, New York, 1996)

    Google Scholar 

  26. K.H. Hellwege, A.M. Hellwege, Landolt-Bornstein: Atomic and Molecular Physics 7: Structure Data of Free Polyatomic Molecules (Springer, Berlin, 1976)

    Google Scholar 

  27. D.R. Kanis, M.A. Ratner, T.J. Marks, Chem. Rev. 94, 195–242 (1994)

    Article  CAS  Google Scholar 

  28. J. Kobus, D. Moncrieff, S. Wilson, J. Phys. B. Atom. Mol. Opt. Phys. 37(3), 571 (2004)

    Article  CAS  Google Scholar 

  29. C. Lee, W. Yang, R.G. Parr, Phys. Rev. B. 37, 785–789 (1988)

    Article  CAS  Google Scholar 

  30. P.S. Liyanage, R.M. De Silva, K.M.N. De Silva, J. Mol. Struct. (Theochem.) 639, 195–201 (2003)

    Article  CAS  Google Scholar 

  31. H. Li, K. Han, X. Shen, Z. Lu, Z. Huang, W. Zhang, Z. Zhang, L. Bai, J. Mol. Struct. (Theochem.) 767, 113–118 (2006)

    Article  CAS  Google Scholar 

  32. C.R. Moylam, R.J. Twieg, V.Y. Lee, S.A. Swanson, K.M. Betteron, R.D. Miller, J. Chem. Soc. 115, 12599–12600 (1993)

    Article  Google Scholar 

  33. J.A. Padron, R. Carrasco, R.F. Pellon, J. Pharmaceutical Sciences. 5, 285–296 (2002)

    Google Scholar 

  34. P.N. Prasad, D.J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers (Wiley, New York USA, 1990)

    Google Scholar 

  35. P. Poornesh, G. Umesh, P.K. Hegde, M.G. Manjunatha, K.B. Manjunatha, A.V. Adhikari, Applied Phys. B. 97, 117–124 (2009)

    Article  CAS  Google Scholar 

  36. V.P. Rao, Y.M. Cai, A.K.Y. Jen, J. Chem. Soc., Chem. Commun. 14, 1689–1690 (1994)

    Article  Google Scholar 

  37. H. Reis, M.G. Papadopoulos, P. Calaminici, K. Jug, A.M. Koster, Calculation of macroscopic linear and nonlinear optical susceptibilities for the naphthalene, anthracene and meta-nitroaniline crystals. J. Chem. Phys. 261, 359–371 (2000)

    CAS  Google Scholar 

  38. G. Roussy, A Nonat, “Determination of the equilibrium molecular structure of inverting molecules by microwave spectroscopy: application to aniline”. J. Mol. Spec. 118, 180–188 (1986)

    Article  Google Scholar 

  39. M. Rumi, G. Zerbi, Chem. Phys. 242, 123–140 (1999)

    Article  CAS  Google Scholar 

  40. Z. Sana, S.K. Hamid, M.S. Kahn, Linear and non linear optical properties of electron donor and acceptor pyridine moiety: a study by ab initio and DFT methods. Can. J. Pure Appl. Sci. 6(1), 1827–1835 (2012)

    Google Scholar 

  41. P.S.P. Silva, H. El Ouazzani, P. Mindaugas, R.S. Manuela, T.A. Claudia, J.F. Abilio, N.S. Bouchta, A.P. José, Experimental and theoretical studies of the second- and third-order NLO properties of a semi-organic compound: 6-Aminoquinolinium iodide monohydrate. J. Chemical Phys. 428, 67–74 (2014)

    CAS  Google Scholar 

  42. H. Soscun, O. Castellano, Y. Berudez, C. Toro-Mendoza, A. Marcano, Y. Alvarado, J. Mol. Struct. (Theochem.) 92, 19–28 (2002)

    Article  Google Scholar 

  43. A. Spott, A. Jaron-Becker, A. Becker, Ab initio and perturbative calculations of the electric susceptibility of atomic hydrogen. Phys. Rev. A 90, 013426 (2014). (1–6)

    Article  Google Scholar 

  44. K.S. Thanthiriwatte, K.M.N. De Silva, J. Mol. Struct. (Theochem.) 617, 169–175 (2002)

    Article  CAS  Google Scholar 

  45. A.D. Tillekaratne, K.M.N. De Silva, J. Mol. Struct. (Theochem.) 638, 169–176 (2003)

    Article  CAS  Google Scholar 

  46. N. Venkatram, M.A. Akundi, D. Narayana Rao, Opt. Exp. 13, 867–872 (2005)

    Article  CAS  Google Scholar 

  47. T. Vijayakumar, J.I. Hubert, N.C.P. Reghunadhan, V.S. Jayakumar, Efficient-electrons delocalization in prospective push–pull non linear optical chromophore 4-[N, N-dimethylamino]-4’-nitro stilbene (DANS): a vibrational spectroscopic study. Chem. Phys. 343, 83 (2008)

    Article  CAS  Google Scholar 

  48. S.H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 58, 1200 (1980)

    Article  CAS  Google Scholar 

  49. C.-J. Yang, S.A. Jenekhe, Conjugated aromatic polyimines. 2. Synthesis, structure, and properties of new aromatic polyazomethines. Macromolecules 28, 1180–1196 (1995)

    Article  CAS  Google Scholar 

  50. J. Zyss, Molecular Nonlinear Optics (Academic Press, Boston, 1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geh Wilson Ejuh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ejuh, G.W., Nouemo, S., Nya, F.T. et al. Modeling of the electronic, optoelectronics, photonic and thermodynamics properties of 1,4-bis(3-carboxyl-3-oxo-prop-1-enyl) benzene molecule. J IRAN CHEM SOC 13, 2039–2048 (2016). https://doi.org/10.1007/s13738-016-0921-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-016-0921-z

Keywords

Navigation