Skip to main content
Log in

Utilization of water-contained surfactant-based ultrasound-assisted microextraction followed by liquid chromatography for determination of polycyclic aromatic hydrocarbons and benzene in commercial oil sample

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

In this work, a microextraction method, water-contained surfactant-based ultrasound-assisted, followed by high-performance liquid chromatography (HPLC) was developed for determination of five polycyclic aromatic hydrocarbons (PAHs) and benzene in commercial oil samples. During the microextraction method, a micellar solution as the only extraction solvent was injected into the oil sample in a conical bottom glass tube and formed a cloudy solution. The dispersion process was accelerated by applying ultrasound irradiation. Phase separation was done by centrifugation and then the lower sediment phase was directly analyzed by HPLC. A chemometrics approach was applied for the optimization of the extraction condition. Under the optimum conditions, the proposed method showed good linearity within the different ranges for different analytes (e.g., 0.10–200 ng mL−1 for phenanthrene), the square of the correlation coefficient was higher than 0.999 and the appropriate limit of detection was in the range of 0.04–0.41 ng mL−1. The recoveries in all cases were above 95 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. D. Pingret, A.S. Fabiano-Tixier, F. Chemat, Accelerated Methods for Sample Preparation in Food, in Comprehensive Sampling and Sample Preparation, ed. by J. Pawliszyn (Academic Press, Oxford, 2012), p. 441

    Chapter  Google Scholar 

  2. P. Viñas, N. Campillo, I. López-García, M. Hernández-Córdoba, Anal. Bioanal. Chem. 406, 2067 (2014)

    Article  Google Scholar 

  3. P. Canosa, I. Rodríguez, E. Rubí, M. Ramil, R. Cela, J. Chromatogr. A. 1188, 132 (2008)

    Article  CAS  Google Scholar 

  4. A.S. Yazdi, Trends Anal. Chem. 30, 918 (2011)

    Article  CAS  Google Scholar 

  5. M. Moradi, Y. Yamini, J. Sep. Sci. 35, 2319 (2012)

    Article  CAS  Google Scholar 

  6. Y. Takagai, W.L. Hinze, Anal. Chem. 81, 7113 (2009)

    Article  CAS  Google Scholar 

  7. A. Kumar, Environmental Contamination and Bioreclamation (A. P. H. Publ. Corp, New Delhi, 2004)

    Google Scholar 

  8. M. Ciecierska, M.W. Obiedziński, Food Control 30, 556 (2013)

    Article  CAS  Google Scholar 

  9. Y. Picó, Food Contaminants and Residue Analysis (Elsevier, Amsterdam and Boston, 2008)

    Google Scholar 

  10. A. Becalski, Processing Contaminants: Benzene, in Encyclopedia of Food Safety, ed. by Y. Motarjemi (Academic Press, Waltham, 2014), p. 376

    Chapter  Google Scholar 

  11. E.S. Johnson, S. Langård, Y.-S. Lin, Sci. Total Environ. 374, 183 (2007)

    Article  CAS  Google Scholar 

  12. F.P. Perera, S.C. Edwards, Prenatal Exposure to Polycyclic Aromatic Hydrocarbons (PAHs), in Encyclopedia of Environmental Health, ed. by J.O. Nriagu (Elsevier, Burlington, 2011), p. 659

    Chapter  Google Scholar 

  13. S. Moret, L.S. Conte, J. Chromatogr. A 882, 245 (2000)

    Article  CAS  Google Scholar 

  14. J.P.F. D’Mello, Food safety contaminants and toxins (CABI Pub. and Cambridge, Oxon and MA, 2003)

    Book  Google Scholar 

  15. T. Wenzl, R. Simon, E. Anklam, J. Kleiner, Trends Anal. Chem. 25, 716 (2006)

    Article  CAS  Google Scholar 

  16. W. Jira, K. Ziegenhals, K. Speer, Food Addit. Contam. Part A, Chem. Anal. Control Expo. Risk. Assess. 25, 704 (2008)

  17. L. Drabova, J. Pulkrabova, K. Kalachova, M. Tomaniova, V. Kocourek, J. Hajslova, Talanta 100, 207 (2012)

    Article  CAS  Google Scholar 

  18. K. Dost, C. İdeli, Food Chem. 133, 193 (2012)

    Article  CAS  Google Scholar 

  19. T. Payanan, N. Leepipatpiboon, P. Varanusupakul, Food Chem. 141, 2720 (2013)

    Article  CAS  Google Scholar 

  20. F. Alarcón, M.E. Báez, M. Bravo, P. Richter, E. Fuentes, Talanta 100, 439 (2012)

    Article  Google Scholar 

  21. E. Sikorska, A. Romaniuk, I.V. Khmelinskii, R. Herance, J.L. Bourdelande, M. Sikorski, J. Kozioł, J. Fluoresc. 14, 25 (2004)

    Article  CAS  Google Scholar 

  22. L. Ferey, N. Delaunay, D.N. Rutledge, C.B.Y. Cordella, H. This, A. Huertas, Y. Raoul, P. Gareil, Talanta 119, 572 (2014)

    Article  CAS  Google Scholar 

  23. L. Ferey, N. Delaunay, D.N. Rutledge, A. Huertas, Y. Raoul, P. Gareil, J. Vial, J. Chromatogr. A 1302, 181 (2013)

    Article  CAS  Google Scholar 

  24. M.-M. Hsieh, Y.-C. Kuo, P.-L. Tsai, H.-T. Chang, J. Chromatogr. A 924, 397 (2001)

    Article  CAS  Google Scholar 

  25. A. Salwiński, R. Delépée, Talanta 122, 180 (2014)

    Article  Google Scholar 

  26. C. André, I. Castanheira, J.M. Cruz, P. Paseiro, A. Sanches-Silva, Trends Food Sci. Technol. 21, 229 (2010)

    Article  Google Scholar 

  27. S. Wu, W. Yu, Food Chem. 134, 597 (2012)

    Article  CAS  Google Scholar 

  28. M. Amzad Hossain, S.M. Salehuddin, Arabian J. Chem. 5, 391 (2012)

    Article  Google Scholar 

  29. J.N. Bianchin, G. Nardini, J. Merib, A.N. Dias, E. Martendal, E. Carasek, J. Chromatogr. A 1233, 22 (2012)

    Article  CAS  Google Scholar 

  30. M.M. Abolghasemi, B. Karimi, V. Yousefi, Anal. Chim. Acta 804, 280 (2013)

    Article  CAS  Google Scholar 

  31. L. Drabova, M. Tomaniova, K. Kalachova, V. Kocourek, J. Hajslova, J. Pulkrabova, Food Control 33, 489 (2013)

    Article  CAS  Google Scholar 

  32. N.D. Forsberg, G.R. Wilson, K.A. Anderson, J. Agric. Food Chem. 59, 8108 (2011)

    Article  CAS  Google Scholar 

  33. T.H. Kao, S. Chen, C.J. Chen, C.W. Huang, B.H. Chen, J. Agric. Food Chem. 60, 1380 (2012)

    Article  CAS  Google Scholar 

  34. N.E. Amlashi, M.R. Hadjmohammadi, S.S.S.J. Nazari, J. Chromatogr. A 1361, 9 (2014)

    Article  CAS  Google Scholar 

  35. H. Ebrahimzadeh, Y. Yamini, F. Kamarei, Talanta 79, 1472 (2009)

    Article  CAS  Google Scholar 

  36. S. Khodadoust, M.R. Hadjmohammadi, Anal. Chim. Acta 699, 113 (2011)

    Article  CAS  Google Scholar 

  37. M.R. Hadjmohammadi, M.H. Fatemi, P. Shakeri, J. Sep. Sci. 35, 3375 (2012)

    Article  CAS  Google Scholar 

  38. P. Shakeri, Z. Mousavi Kiasari, M. Hadjmohammadi, M. Fatemi, J. Iran. Chem. Soc. 11, 1337 (2014)

    Article  CAS  Google Scholar 

  39. L. Lu, L. Zhu, Environ. Sci. Pollut. Res. 19, 1515 (2012)

    Article  CAS  Google Scholar 

  40. J.C. Ma, D.A. Dougherty, Chem. Rev. 97, 1303 (1997)

    Article  CAS  Google Scholar 

  41. F. Rezaei, Y. Yamini, M. Moradi, B. Daraei, Anal. Chim. Acta 804, 135 (2013)

    Article  CAS  Google Scholar 

  42. S.-Y. Jung, J.-S. Park, M.-S. Chang, M.-S. Kim, S.-M. Lee, J.-H. Kim, Y.-Z. Chae, Food Sci. Biotechnol. 22, 241 (2013)

    Article  CAS  Google Scholar 

  43. S.W.C. Chung, J.S.Y. Lau, Anal. Methods 7, 7631 (2015)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Hadjmohammadi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

13738_2016_834_MOESM1_ESM.docx

Fig. S1. Response surface for the 23 central composite designs obtained by plotting concentration of the extraction solution versus the volume of the extraction solution. Fig. S2. Response surface for the 23 central composite designs obtained by plotting volume of AcOH versus the volume of the extraction solution. Fig. S3. Response surface for the 23 central composite designs obtained by plotting volume of AcOH versus the concentration of the extraction solution. (DOCX 1491 kb)

Supplementary material 2 (DOCX 24 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amlashi, N.E., Hadjmohammadi, M.R. Utilization of water-contained surfactant-based ultrasound-assisted microextraction followed by liquid chromatography for determination of polycyclic aromatic hydrocarbons and benzene in commercial oil sample. J IRAN CHEM SOC 13, 1197–1204 (2016). https://doi.org/10.1007/s13738-016-0834-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-016-0834-x

Keywords

Navigation