Skip to main content
Log in

Dispersive liquid–liquid microextraction in food analysis. A critical review

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

An extensive critical evaluation of the application of dispersive liquid–liquid microextraction (DLLME) combined with chromatographic and atomic-spectroscopic methods for the determination of organic and inorganic compounds is presented. The review emphasizes the procedures used for the prior treatment of food samples, which are very different from the DLLME procedures generally proposed for water samples. The main contribution of this work in the field of DLLME reviews is its critical review of the abundant literature showing the increasing interest and practical advantages of using DLLME and closely related microextraction techniques for food analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

DAD:

Diode-array detection

DLLME:

Dispersive liquid–liquid microextraction

ESI:

Electrospray ionization

FLD:

Fluorescence detection

GC:

Gas chromatography

HF-LPME:

Hollow-fiber-supported liquid-phase microextraction

IAC:

Immunoaffinity column

I-DLLME:

Inverted dispersive liquid–liquid microextraction

IL:

Ionic liquid

LC:

Liquid chromatography

LLE:

Liquid–liquid extraction

LOD:

Detection limit

LPME:

Liquid-phase microextraction

MAE:

Microwave-assisted extraction

MS:

Mass spectrometry

MS/MS:

Tandem mass spectrometry

QuEChERS:

Quick, easy, cheap, effective, rugged, and safe

RP-DLLME:

Reversed phase dispersive liquid–liquid microextraction

RP-LC:

Reversed-phase liquid chromatography

SDME:

Single-drop microextraction

SFE:

Supercritical fluid extraction

SFO:

Solidification of the floating organic drop

SPE:

Solid-phase extraction

SPME:

Solid-phase microextraction

UA-DLLME:

Ultrasound-assisted dispersive liquid–liquid microextraction

UALLME:

Ultrasound-assisted liquid–liquid microextraction

UASEME:

Ultrasound-assisted surfactant-enhanced microextraction

UHPLC:

Ultra-high-performance liquid chromatography

USAEME:

Ultrasound-assisted emulsification microextraction

UV:

Ultraviolet

References

  1. Mitra S (2003) Sample preparation techniques in analytical chemistry. Wiley-Interscience, Totowa

    Google Scholar 

  2. Buldini PL, Ricci L, Sharma JL (2002) Recent applications of sample preparation techniques in food analysis. J Chromatogr A 975:47–70

    CAS  Google Scholar 

  3. Saito Y, Jinno K (2003) Miniaturized sample preparation combined with liquid phase separations. J Chromatogr A 1000:53–67

    CAS  Google Scholar 

  4. Nerín C, Salafranca J, Aznar M, Batlle R (2009) Critical review on recent developments in solventless techniques for extraction of analytes. Anal Bioanal Chem 393:809–833

    Google Scholar 

  5. Rezaee M, Assadi Y, Milani Hosseini MR, Aghaee E, Ahmadi F, Berijani S (2006) Determination of organic compounds in water using dispersive liquid–liquid microextraction. J Chromatogr A 1116:1–9

    CAS  Google Scholar 

  6. Berijani S, Assadi Y, Anbia M, Milani Hosseini MR, Aghaee E (2006) Dispersive liquid–liquid microextraction combined with gas chromatography-flame photometric detection: very simple, rapid and sensitive method for the determination of organophosphorus pesticides in water. J Chromatogr A 1123:1–9

    CAS  Google Scholar 

  7. Ban T, Kawaizumi F, Nii S, Takahashi K (2000) Study of drop coalescence behavior for liquid–liquid extraction operation. Chem Eng Sci 55:5385–5391

    CAS  Google Scholar 

  8. Pena-Pereira F, Lavilla I, Bendicho C (2009) Miniaturized preconcentration methods based on liquid-liquid extraction and their application in inorganic ultratrace analysis and speciation: a review. Spectrochim Acta B 64:1–15

    Google Scholar 

  9. Rezaee M, Yamini Y, Faraji M (2010) Evolution of dispersive liquid-liquid microextraction method. J Chromatogr A 1217:2342–2357

    CAS  Google Scholar 

  10. Boonchiangma S, Ngeontae W, Srijaranai S (2012) Determination of six pyrethroid insecticides in fruit juice samples using dispersive liquid-liquid microextraction combined with high performance liquid chromatography. Talanta 88:209–215

    CAS  Google Scholar 

  11. Farhadi K, Maleki R (2011) Dispersive liquid-liquid microextraction followed by HPLC-DAD as an efficient and sensitive technique for the determination of patulin from apple juice and concentrate samples. J Chin Chem Soc 58:340–345

    CAS  Google Scholar 

  12. Lin X, Chen X, Huo X, Yu Z, Bi K, Li Q (2011) Dispersive liquid-liquid microextraction coupled with high-performance liquid chromatography-diode array detection for the determination of N-methyl carbamate pesticides in vegetables. J Sep Sci 34:202–209

    CAS  Google Scholar 

  13. Antep HM, Merdivan M (2012) Development of new dispersive liquid-liquid microextraction technique for the identification of zearalenone in beer. Anal Methods 4:4129–4134

    CAS  Google Scholar 

  14. Campone L, Piccinelli AL, Celano R, Rastrelli L (2011) Application of dispersive liquid-liquid microextraction for the determination of aflatoxins B1, B2, G1 and G2 in cereal products. J Chromatogr A 1218:7648–7654

    CAS  Google Scholar 

  15. Moema D, Nindi MM, Dube S (2012) Development of a dispersive liquid-liquid microextraction method for the determination of fluoroquinolones in chicken liver by high performance liquid chromatography. Anal Chim Acta 730:80–86

    CAS  Google Scholar 

  16. Zhou S, Chen H, Wu B, Ma C, Ye Y (2012) Sensitive determination of carbamates in fruit and vegetables by a combination of solid-phase extraction and dispersive liquid-liquid microextraction prior to HPLC. Microchim Acta 176:419–427

    CAS  Google Scholar 

  17. Wu Q, Li Z, Wang C, Wu C, Wang W, Wang Z (2011) Dispersive solid-phase extraction clean-up combined with dispersive liquid-liquid microextraction for the determination of neonicotinoid insecticides in vegetable samples by high-performance liquid chromatography. Food Anal Methods 4:559–566

    Google Scholar 

  18. Melo A, Mansilha C, Pinho O, Ferreira IMPLVO (2013) Analysis of pesticides in tomato combining QuEChERS and dispersive liquid-liquid microextraction followed by high-performance liquid chromatography. Food Anal Methods 6:559–568

    Google Scholar 

  19. Chen L, Yin L, Song F, Liu Z, Zheng Z, Xing J, Liu S (2013) Determination of pesticide residues in ginseng by dispersive liquid-liquid microextraction and ultra high performance liquid chromatography-tandem mass spectrometry. J Chromatogr B 917:71–77

    Google Scholar 

  20. Campillo N, Viñas P, Férez-Melgarejo G, Hernández-Córdoba M (2013) Dispersive liquid-liquid microextraction for the determination of macrocyclic lactones in milk by liquid chromatography with diode array detection and atmospheric pressure chemical ionization ion-trap tandem mass spectrometry. J Chromatogr A 1282:20–26

    CAS  Google Scholar 

  21. Campillo N, Viñas P, Férez-Melgarejo G, Hernández-Córdoba M (2013) Liquid chromatography with diode array detection and tandem mass spectrometry for the determination of neonicotinoid insecticides in honey samples using dispersive liquid–liquid microextraction. J Agric Food Chem 61:4799–4805

    CAS  Google Scholar 

  22. Karami-Osboo R, Maham M, Miri R, AliAbadi MHS, Mirabolfathy M, Javidnia K (2013) Evaluation of dispersive liquid-liquid microextraction-HPLC-UV for determination of deoxynivalenol (DON) in wheat flour. Food Anal Methods 6:176–180

    Google Scholar 

  23. Adlnasab L, Ebrahimzadeh H, Yamini Y (2012) A three phase dispersive liquid-liquid microextraction technique for the extraction of antibiotics in milk. Microchim Acta 179:179–184

    CAS  Google Scholar 

  24. Arroyo-Manzanares N, Gámiz-Gracia L, García-Campaña AM (2012) Determination of ochratoxin A in wines by capillary liquid chromatography with laser induced fluorescence detection using dispersive liquid-liquid microextraction. Food Chem 135:368–372

    CAS  Google Scholar 

  25. Zhang S, Li C, Song S, Feng T, Wang C, Wang Z (2010) Application of dispersive liquid-liquid microextraction combined with sweeping micellar electrokinetic chromatography for trace analysis of six carbamate pesticides in apples. Anal Methods 2:54–62

    CAS  Google Scholar 

  26. Moreno-González D, Gámiz-Gracia L, García-Campaña AM, Bosque-Sendra JM (2011) Use of dispersive liquid-liquid microextraction for the determination of carbamates in juice samples by sweeping-micellar electrokinetic chromatography. Anal Bioanal Chem 400:1329–1338

    Google Scholar 

  27. Victor-Ortega MD, Lara FJ, García-Campaña AM, del Olmo-Iruela M (2013) Evaluation of dispersive liquid-liquid microextraction for the determination of patulin in apple juices using micellar electrokinetic capillary chromatography. Food Control 31:353–358

    CAS  Google Scholar 

  28. Alshana U, Goger NG, Ertas N (2013) Dispersive liquid-liquid microextraction combined with field-amplified sample stacking in capillary electrophoresis for the determination of non-steroidal anti-inflammatory drugs in milk and dairy products. Food Chem 138:890–897

    CAS  Google Scholar 

  29. Viñas P, Bravo-Bravo M, López-García I, Hernández-Córdoba M (2013) Quantification of beta-carotene, retinol, retinyl acetate and retinyl palmitate in enriched fruit juices using dispersive liquid-liquid microextraction coupled to liquid chromatography with fluorescence detection and atmospheric pressure chemical ionization-mass spectrometry. J Chromatogr A 1275:1–8

    Google Scholar 

  30. Viñas P, Bravo-Bravo M, López-García I, Hernández-Córdoba M (2013) Dispersive liquid-liquid microextraction for the determination of vitamins D and K by liquid chromatography with diode-array and atmospheric pressure chemical ionization-mass spectrometry detection. Talanta. doi:10.1016/j.talanta.2013.06.050

    Google Scholar 

  31. Tomasini D, Sampaio MRF, Cardoso LV, Caldas SS, Primel EG (2011) Comparison of dispersive liquid-liquid microextraction and the modified QuEChERS method for the determination of fipronil in honey by high performance liquid chromatography with diode-array detection. Anal Methods 3:1893–1900

    CAS  Google Scholar 

  32. Daneshfar A, Khezeli T, Lotfi HJ (2009) Determination of cholesterol in food samples using dispersive liquid-liquid microextraction followed by HPLC-UV. J Chromatogr B 877:456–460

    CAS  Google Scholar 

  33. Dashtbozorgi Z, Ramezani MK, Waqif-Husain S (2013) Optimization and validation of a new pesticide residue method for cucumber and tomato using acetonitrile-based extraction-dispersive liquid-liquid microextraction followed by liquid chromatography-tandem mass spectrometry. Anal Methods 5:1192–1198

    CAS  Google Scholar 

  34. Wu J, Xiang B, Xia J (2009) Application of ultrasound-assisted emulsification-microextraction combined with high performance liquid chromatography to the determination of propoxur in environmental and beverage samples. Microchim Acta 166:157–162

    CAS  Google Scholar 

  35. Cheng J, Xia Y, Zhou Y, Guo F, Chen G (2011) Application of an ultrasound-assisted surfactant-enhanced emulsification microextraction method for the analysis of diethofencarb and pyrimethanil fungicides in water and fruit juice samples. Anal Chim Acta 701:86–91

    CAS  Google Scholar 

  36. Zhao X, Fu L, Hu J, Li J, Wang H, Huang C, Wang X (2009) Analysis of PAHs in water and fruit juice samples by DLLME combined with LC-fluorescence detection. Chromatographia 69:1385–1389

    CAS  Google Scholar 

  37. Yan H, Qiao J, Wang H, Yang G, Row KH (2011) Molecularly imprinted solid-phase extraction combined with ultrasound-assisted dispersive liquid-liquid microextraction for the determination of four Sudan dyes in sausage samples. Analyst 136:2629–2634

    CAS  Google Scholar 

  38. Yan H, Wang H, Qiao J, Yang G (2011) Molecularly imprinted matrix solid-phase dispersion combined with dispersive liquid-liquid microextraction for the determination of four Sudan dyes in egg yolk. J Chromatogr A 1218:2182–2188

    CAS  Google Scholar 

  39. Fu L, Liu X, Hu J, Zhao X, Wang H, Wang X (2009) Application of dispersive liquid-liquid microextraction for the analysis of triazophos and carbaryl pesticides in water and fruit juice samples. Anal Chim Acta 632:289–295

    CAS  Google Scholar 

  40. Chen H, Ying J, Chen H, Huang J, Liao L (2008) LC determination of chloramphenicol in honey using dispersive liquid-liquid microextraction. Chromatographia 68:629–634

    CAS  Google Scholar 

  41. Chen H, Chen H, Ying J, Huang J, Liao L (2009) Dispersive liquid-liquid microextraction followed by high-performance liquid chromatography as an efficient and sensitive technique for simultaneous determination of chloramphenicol and thiamphenicol in honey. Anal Chim Acta 632:80–85

    CAS  Google Scholar 

  42. Chen H, Chen H, Liao L, Ying J, Huang J (2010) Determination of thiamphenicol in honey by dispersive liquid-liquid microextraction with high-performance liquid chromatography. J Chromatogr Sci 48:450–455

    CAS  Google Scholar 

  43. Viñas P, López-García I, Bravo-Bravo M, Briceño M, Hernández-Córdoba M (2012) Dispersive liquid-liquid microextraction coupled to liquid chromatography for thiamine determination in foods. Anal Bioanal Chem 403:1059–1066

    Google Scholar 

  44. Liu B, Yan H, Qiao F, Geng Y (2011) Determination of clenbuterol in porcine tissues using solid-phase extraction combined with ultrasound-assisted dispersive liquid-liquid microextraction and HPLC-UV detection. J Chromatogr B 879:90–94

    CAS  Google Scholar 

  45. Qiao F, Zhang X, Wang M, Kang Y (2010) Rapid extraction of imidacloprid in tomatoes by ultrasonic dispersion liquid-liquid microextraction coupled with LC determination. Chromatographia 72:331–335

    CAS  Google Scholar 

  46. Campillo N, Viñas P, Férez-Melgarejo G, Hernández-Córdoba M (2013) Dispersive liquid-liquid microextraction for the determination of three cytokinin compounds in fruits and vegetables by liquid chromatography with time-of-flight mass spectrometry. Talanta 116:376–381

    CAS  Google Scholar 

  47. Jovanov P, Guzsvány V, Franko M, Lazić S, Sakač M, Šarić B, Banjac V (2013) Multi-residue method for determination of selected neonicotinoid insecticides in honey using optimized dispersive liquid-liquid microextraction combined with liquid chromatography-tandem mass spectrometry. Talanta 111:125–133

    CAS  Google Scholar 

  48. Tsai WH, Chuang HY, Chen HH, Huang JJ, Chen HC, Cheng SH, Huang TC (2009) Application of dispersive liquid-liquid microextraction and dispersive micro-solid-phase extraction for the determination of quinolones in swine muscle by high-performance liquid chromatography with diode-array detection. Anal Chim Acta 656:56–62

    CAS  Google Scholar 

  49. Wang P, Yang X, Wang J, Cui J, Dong AJ, Zhao HT, Zhang LW, Wang ZY, Xu RB, Li WJ, Zhang YC, Zhang H, Jing J (2012) Multi-residue method for determination of seven neonicotinoid insecticides in grains using dispersive solid-phase extraction and dispersive liquid-liquid micro-extraction by high performance liquid chromatography. Food Chem 134:1691–1698

    CAS  Google Scholar 

  50. Campone L, Piccinelli AL, Celano R, Rastrelli L (2012) pH-controlled dispersive liquid-liquid microextraction for the analysis of ionisable compounds in complex matrices: case study of ochratoxin A in cereals. Anal Chim Acta 754:61–66

    CAS  Google Scholar 

  51. Vichapong J, Burakham R (2012) Novel ultrasound-assisted mixed anionic-cationic surfactant-enhanced emulsification microextraction combined with HPLC for the determination of carbamate pesticides. Anal Methods 4:2101–2108

    CAS  Google Scholar 

  52. Biparva P, Ehsani M, Hadjmohammadi MR (2012) Dispersive liquid-liquid microextraction using extraction solvents lighter than water combined with high performance liquid chromatography for determination of synthetic antioxidants in fruit juice samples. J Food Compos Anal 27:87–94

    CAS  Google Scholar 

  53. Farajzadeh MA, Bahram M, Vardast MR, Bamorowat M (2011) Dispersive liquid-liquid microextraction for the analysis of three organophosphorus pesticides in real samples by high performance liquid chromatography-ultraviolet detection and its optimization by experimental design. Microchim Acta 172:465–470

    CAS  Google Scholar 

  54. Zhang L, Chen F, Liu S, Chen B, Pan C (2012) Ionic liquid-based vortex-assisted dispersive liquid-liquid microextraction of organophosphorus pesticides in apple and pear. J Sep Sci 35:2514–2519

    CAS  Google Scholar 

  55. He L, Luo X, Jiang X, Qu L (2010) A new 1,3-dibutylimidazolium hexafluorophosphate ionic liquid-based dispersive liquid-liquid microextraction to determine organophosphorus pesticides in water and fruit samples by high-performance liquid chromatography. J Chromatogr A 1217:5013–5020

    CAS  Google Scholar 

  56. Ravelo-Pérez LM, Hernández-Borges J, Asensio-Ramos M, Rodríguez-Delgado MA (2009) Ionic liquid based dispersive liquid-liquid microextraction for the extraction of pesticides from bananas. J Chromatogr A 1216:7336–7345

    Google Scholar 

  57. Wang X, Telepchak MJ (2013) Determination of pesticides in red wine by QuEChERS extraction, rapid mini-cartridge cleanup and LC-MS-MS detection. LC GC Eur 26:66–77

    CAS  Google Scholar 

  58. Arroyo-Manzanares N, García-Campaña AM, Gámiz-Gracia L (2011) Comparison of different sample treatments for the analysis of ochratoxin A in wine by capillary HPLC with laser-induced fluorescence detection. Anal Bioanal Chem 401:2987–2994

    CAS  Google Scholar 

  59. Ravelo-Pérez LM, Hernández-Borges J, Herrera-Herrera AV, Rodríguez-Delgado MA (2009) Pesticide extraction from table grapes and plums using ionic liquid based dispersive liquid-liquid microextraction. Anal Bioanal Chem 395:2387–2395

    Google Scholar 

  60. Wang S, Liu C, Yang S, Liu F (2013) Ionic liquid-based dispersive liquid-liquid microextraction following high-performance liquid chromatography for the determination of fungicides in fruit juices. Food Anal Methods 6:481–487

    CAS  Google Scholar 

  61. Xu X, Su R, Zhao X, Liu Z, Zhang Y, Li D, Li X, Zhang H, Wang Z (2011) Ionic liquid-based microwave-assisted dispersive liquid-liquid microextraction and derivatization of sulfonamides in river water, honey, milk, and animal plasma. Anal Chim Acta 707:92–99

    CAS  Google Scholar 

  62. Jia S, Ryu Y, Kwon SW, Lee J (2013) An in situ benzoylation-dispersive liquid-liquid microextraction method based on solidification of floating organic droplets for determination of biogenic amines by liquid chromatography-ultraviolet analysis. J Chromatogr A 1282:1–10

    CAS  Google Scholar 

  63. Zhang J, Gao H, Peng B, Li S, Zhou Z (2011) Comparison of the performance of conventional, temperature-controlled, and ultrasound-assisted ionic liquid dispersive liquid-liquid microextraction combined with high-performance liquid chromatography in analyzing pyrethroid pesticides in honey samples. J Chromatogr A 1218:6621–6629

    CAS  Google Scholar 

  64. Viñas P, Bravo-Bravo M, López-García I, Hernández-Córdoba M (2012) Determination of benfothiamine in nutraceuticals using dispersive liquid-liquid microextraction coupled to liquid chromatography. Anal Methods 4:2759–2763

    Google Scholar 

  65. Xu X, Su R, Zhao X, Liu Z, Li D, Li X, Zhang H, Wang Z (2011) Determination of formaldehyde in beverages using microwave-assisted derivatization and ionic liquid-based dispersive liquid-liquid microextraction followed by high-performance liquid chromatography. Talanta 85:2632–2638

    CAS  Google Scholar 

  66. Ranjbari E, Biparva P, Hadjmohammadi MR (2012) Utilization of inverted dispersive liquid-liquid microextraction followed by HPLC-UV as a sensitive and efficient method for the extraction and determination of quercetin in honey and biological samples. Talanta 89:117–123

    CAS  Google Scholar 

  67. Zhou Y, Han L, Cheng J, Guo F, Zhi X, Hu H, Chen G (2011) Dispersive liquid-liquid microextraction based on the solidification of a floating organic droplet for simultaneous analysis of diethofencarb and pyrimethanil in apple pulp and peel. Anal Bioanal Chem 399:1901–1906

    CAS  Google Scholar 

  68. Huang KJ, Wei CY, Liu WL, Xie WZ, Zhang JF, Wang W (2009) Ultrasound-assisted dispersive liquid-liquid microextraction combined with high-performance liquid chromatography-fluorescence detection for sensitive determination of biogenic amines in rice wine samples. J Chromatogr A 1216:6636–6641

    CAS  Google Scholar 

  69. Kamankesh M, Mohammadi A, Tehrani ZM, Ferdowsi R, Hosseini H (2013) Dispersive liquid-liquid microextraction followed by high-performance liquid chromatography for determination of benzoate and sorbate in yogurt drinks and method optimization by central composite design. Talanta 109:46–51

    CAS  Google Scholar 

  70. Liu JF, Jonsson JA, Jiang GB (2005) Application of ionic liquids in analytical chemistry. Trends Anal Chem 24:20–27

    Google Scholar 

  71. Wang Y, You J, Ren R, Xiao Y, Gao S, Zhang H, Yu A (2010) Determination of triazines in honey by dispersive liquid-liquid microextraction high-performance liquid chromatography. J Chromatogr A 1217:4241–4246

    CAS  Google Scholar 

  72. Yang P, Ren H, Wei Z, Liu X, Jiang S (2012) Orthogonal array optimization of ionic liquid based dispersive liquid-liquid microextraction for toxic anilines in foods. Sci China Chem 55:277–284

    CAS  Google Scholar 

  73. Gao S, Yang X, Yu W, Liu Z, Zhang H (2012) Ultrasound-assisted ionic liquid/ionic liquid-dispersive liquid-liquid microextraction for the determination of sulfonamides in infant formula milk powder using high-performance liquid chromatography. Talanta 99:875–882

    CAS  Google Scholar 

  74. Wang S, Ren L, Xu Y, Liu F (2011) Application of ultrasound-assisted ionic liquid dispersive liquid-phase microextraction followed high-performance liquid chromatography for the determination of fungicides in red wine. Microchim Acta 173:453–457

    CAS  Google Scholar 

  75. Huang KJ, Jin CX, Song SL, Wei CY, Liu YM, Li J (2011) Development of an ionic liquid-based ultrasonic-assisted liquid-liquid microextraction method for sensitive determination of biogenic amines: Application to the analysis of octopamine, tyramine and phenethylamine in beer samples. J Chromatogr B 879:579–584

    CAS  Google Scholar 

  76. Baghdadi M, Shemirani F (2008) Cold-induced aggregation microextraction: a novel sample preparation technique based on ionic liquids. Anal Chim Acta 613:56–63

    CAS  Google Scholar 

  77. Liu Z, Liu W, Rao H, Feng T, Li C, Wang C, Wang Z (2012) Determination of some carbamate pesticides in watermelon and tomato samples by dispersive liquid-liquid microextraction combined with high performance liquid chromatography. Int J Environ Anal Chem 92:571–581

    CAS  Google Scholar 

  78. Zhang S, Yang X, Yin X, Wang C, Wang Z (2012) Dispersive liquid-liquid microextraction combined with sweeping micellar electrokinetic chromatography for the determination of some neonicotinoid insecticides in cucumber samples. Food Chem 133:544–550

    CAS  Google Scholar 

  79. Liang P, Liu G, Wang F, Wang W (2013) Ultrasound-assisted surfactant-enhanced emulsification microextraction with solidification of floating organic droplet followed by high performance liquid chromatography for the determination of strobilurin fungicides in fruit juice samples. J Chromatogr B 926:62–67

    CAS  Google Scholar 

  80. Yamini Y, Saleh A, Rezaee M, Ranjbar L, Moradi M (2012) Ultrasound-assisted emulsification microextraction of various preservatives from cosmetics, beverages, and water samples. J Liq Chromatogr Relat Technol 35:2623–2642

    CAS  Google Scholar 

  81. Viñas P, Bravo-Bravo M, López-García I, Hernández-Córdoba M (2013) An evaluation of cis- and trans-retinol contents in juices using dispersive liquid-liquid microextraction coupled to liquid chromatography with fluorimetric detection. Talanta 103:166–171

    Google Scholar 

  82. Viñas P, Bravo-Bravo M, López-García I, Pastor-Belda M, Hernández-Córdoba M (2013) Pressurized liquid extraction and dispersive liquid-liquid microextraction for determination of tocopherols and tocotrienols in foods by liquid chromatography with fluorescence and atmospheric pressure chemical ionization-mass spectrometry detection. Talanta (in press)

  83. Campone L, Piccinelli AL, Rastrelli L (2011) Dispersive liquid-liquid microextraction combined with high-performance liquid chromatography-tandem mass spectrometry for the identification and the accurate quantification by isotope dilution assay of ochratoxin A in wine samples. Anal Bioanal Chem 399:1279–1286

    CAS  Google Scholar 

  84. Hashemi P, Raeisi F, Ghiasvand AR, Rahimi A (2010) Reversed-phase dispersive liquid-liquid microextraction with central composite design optimization for preconcentration and HPLC determination of oleuropein. Talanta 80:1926–1931

    CAS  Google Scholar 

  85. Hashemi P, Serenjeh FN, Ghiasvand AR (2011) Reversed-phase dispersive liquid-liquid microextraction with multivariate optimization for sensitive HPLC determination of tyrosol and hydroxytyrosol in olive oil. Anal Sci 27:943–947

    CAS  Google Scholar 

  86. Wang WX, Yang TJ, Li ZG, Jong TT, Lee MR (2011) A novel method of ultrasound-assisted dispersive liquid-liquid microextraction coupled to liquid chromatography-mass spectrometry for the determination of trace organoarsenic compounds in edible oil. Anal Chim Acta 690:221–227

    CAS  Google Scholar 

  87. Li S, Li Y, Wang Y, Zhou W, Gao H, Zhang S (2013) Water-based slow injection ultrasound-assisted emulsification microextraction for the determination of deoxynivalenol and de-epoxy-deoxynivalenol in maize and pork samples. Anal Bioanal Chem 405:4307–4311

    CAS  Google Scholar 

  88. Namiesnik J (2001) Green analytical chemistry - some remarks. J Sep Sci 24:151–153

    CAS  Google Scholar 

  89. de la Guardia M, Armenta S (2010) Green analytical chemistry: theory and practice, vol 57. Elsevier, Amsterdam

    Google Scholar 

  90. Sandra P, Vanhoenacker G, David F, Sandra K, Pereira A (2010) Green chromatography (part 1): introduction and liquid chromatography. LC GC Eur 23:242–259

    CAS  Google Scholar 

  91. Staples GO, Naimy H, Yin H, Kileen K, Kraiczek K, Costello CE, Zaia J (2010) Improved hydrophilic interaction chromatography LC/MS of heparinoids using a chip with postcolumn makeup flow. Anal Chem 82:516–522

    CAS  Google Scholar 

  92. Careri M, Bianchi F, Corradini C (2002) Recent advances in the application of mass spectrometry in food-related analysis. J Chromatogr A 970:3–64

    CAS  Google Scholar 

  93. Blasco C, Picó Y (2007) Liquid chromatography-mass spectrometry. In: Yolanda P (ed) Food Toxicants analysis. Elsevier, Amsterdam, pp 509–559

    Google Scholar 

  94. Niessen WMA (2003) Progress in liquid chromatography–mass spectrometry instrumentation and its impact on high-throughput screening. J Chromatogr A 1000:413–436

    CAS  Google Scholar 

  95. Farajzadeh MA, Seyedi SE, Shalamzari MS, Bamorowat M (2009) Dispersive liquid-liquid microextraction using extraction solvent lighter than water. J Sep Sci 32:3191–3200

    CAS  Google Scholar 

  96. Ramos L, Ramos JJ, Brinkman UAT (2005) Miniaturization in sample treatment for environmental analysis. Anal Bioanal Chem 381:119–140

    CAS  Google Scholar 

  97. Andruch V, Acebal CC, Škrlíková J, Sklenářová H, Solich P, Balogh IS, Billes F, Kocúrová L (2012) Automated on-line dispersive liquid–liquid microextraction based on a sequential injection system. Microchem J 100:77–82

    CAS  Google Scholar 

  98. Yiantzi E, Psillakis E, Tyrovola K, Kalogerakis N (2010) Vortex-assisted liquid–liquid microextraction of octylphenol, nonylphenol and bisphenol-A. Talanta 80:2057–2062

    CAS  Google Scholar 

  99. Pérez-Serradilla JA, Priego-Capote F, Luque de Castro MD (2007) Simultaneous ultrasound-assisted emulsification - extraction of polar and nonpolar compounds from solid plant samples. Anal Chem 79:6767–6774

    Google Scholar 

  100. Regueiro J, Llompart M, García-Jares C, García-Monteagudo JC, Cela R (2008) Ultrasound-assisted emulsification-microextraction of emergent contaminants and pesticides in environmental waters. J Chromatogr A 1190:27–38

    CAS  Google Scholar 

  101. Campillo N, Viñas P, Cacho JI, Peñalver R, Hernández-Córdoba M (2010) Evaluation of dispersive liquid-liquid microextraction for the simultaneous determination of chlorophenols and haloanisoles in wines and cork stoppers using gas chromatography–mass spectrometry. J Chromatogr A 1217:7323–7330

    CAS  Google Scholar 

  102. Carpinteiro I, Abuín B, Rodríguez I, Ramil M, Cela R (2012) Mixed-mode solid-phase extraction followed by dispersive liquid-liquid microextraction for the sensitive determination of ethylphenols in red wines. J Chromatogr A 1229:79–85

    CAS  Google Scholar 

  103. Cunha SC, Almeida C, Mendes E, Fernandes JO (2011) Simultaneous determination of bisphenol A and bisphenol B in beverages and powdered infant formula by dispersive liquid-liquid micro-extraction and heart-cutting multidimensional gas chromatography–mass spectrometry. Food Addit Contam A 28:513–526

    CAS  Google Scholar 

  104. Pizarro C, Sáenz-González C, Pérez-del-Notario N, González-Sáiz JM (2010) Optimisation of a dispersive liquid-liquid microextraction method for the simultaneous determination of halophenols and haloanisoles in wines. J Chromatogr A 1217:7630–7637

    CAS  Google Scholar 

  105. Cunha SC, Cunha C, Ferreira AR, Fernandes JO (2012) Determination of bisphenol A and bisphenol B in canned seafood combining QuEChERS extraction with dispersive liquid-liquid microextraction followed by gas chromatography–mass spectrometry. Anal Bioanal Chem 404:2453–2463

    CAS  Google Scholar 

  106. Almeida C, Fernandes JO, Cunha SC (2012) A novel dispersive liquid-liquid microextraction (DLLME) gas chromatography–mass spectrometry (GC-MS) method for the determination of eighteen biogenic amines in beer. Food Control 25:380–388

    CAS  Google Scholar 

  107. Cunha SC, Fernandes JO, Oliveira MBPP (2009) Fast analysis of multiple pesticide residues in apple juice using dispersive liquid-liquid microextraction and multidimensional gas chromatography–mass spectrometry. J Chromatogr A 1216:8835–8844

    CAS  Google Scholar 

  108. Cunha SC, Fernandes JO (2011) Multipesticide residue analysis in maize combining acetonitrile-based extraction with dispersive liquid-liquid microextraction followed by gas chromatography–mass spectrometry. J Chromatogr A 1218:7748–7757

    CAS  Google Scholar 

  109. Melo A, Cunha SC, Mansilha C, Aguiar A, Pinho O, Ferreira IMPLVO (2012) Monitoring pesticide residues in greenhouse tomato by combining acetonitrile-based extraction with dispersive liquid-liquid microextraction followed by gas-chromatography-mass spectrometry. Food Chem 135:1071–1077

    CAS  Google Scholar 

  110. Campillo N, Viñas P, Martínez-Castillo N, Hernández-Córdoba M (2011) Determination of volatile nitrosamines in meat products by microwave-assisted extraction and dispersive liquid-liquid microextraction coupled to gas chromatography–mass spectrometry. J Chromatogr A 1218:1815–1821

    CAS  Google Scholar 

  111. Fariña L, Boido E, Carrau F, Dellacassa E (2007) Determination of volatile phenols in red wines by dispersive liquid-liquid microextraction and gas chromatography–mass spectrometry detection. J Chromatogr A 1157:46–50

    Google Scholar 

  112. Rodríguez-Cabo T, Rodríguez I, Cela R (2012) Determination of hydroxylated stilbenes in wine by dispersive liquid-liquid microextraction followed by gas chromatography mass spectrometry. J Chromatogr A 1258:21–29

    Google Scholar 

  113. Xiong J, Hu B (2008) Comparison of hollow fiber liquid phase microextraction and dispersive liquid-liquid microextraction for the determination of organosulfur pesticides in environmental and beverage samples by gas chromatography with flame photometric detection. J Chromatogr A 1193:7–18

    CAS  Google Scholar 

  114. Andraščíková M, Hrouzková S, Cunha SC (2013) Combination of QuEChERS and DLLME for GC-MS determination of pesticide residues in orange samples. Food Addit Contam A 30:286–297

    Google Scholar 

  115. Bidari A, Ganjali MR, Norouzi P, Hosseini MRM, Assadi Y (2011) Sample preparation method for the analysis of some organophosphorus pesticides residues in tomato by ultrasound-assisted solvent extraction followed by dispersive liquid-liquid microextraction. Food Chem 126:1840–1844

    CAS  Google Scholar 

  116. Han Y, Jia X, Liu X, Duan T, Chen H (2010) DLLME combined with GC-MS for the determination of methylparaben, ethylparaben, propylparaben and butylparaben in beverage samples. Chromatographia 72:351–355

    CAS  Google Scholar 

  117. Hu J, Li Y, Zhang W, Wang H, Huang C, Zhang M, Wang X (2009) Dispersive liquid-liquid microextraction followed by gas chromatography-electron capture detection for determination of polychlorinated biphenyls in fish. J Sep Sci 32:2103–2108

    CAS  Google Scholar 

  118. Liu X, Hu J, Huang C, Wang H, Wang X (2009) Determination of polybrominated diphenyl ethers in aquatic animal tissue using cleanup by freezing-dispersive liquid-liquid microextraction combined with GC-MS. J Sep Sci 32:4213–4219

    CAS  Google Scholar 

  119. Liu X, Zhao A, Zhang A, Liu H, Xiao W, Wang C, Wang X (2011) Dispersive liquid-liquid microextraction and gas chromatography–mass spectrometry determination of polychlorinated biphenyls and polybrominated diphenyl ethers in milk. J Sep Sci 34:1084–1090

    Google Scholar 

  120. Sereshti H, Izadmanesh Y, Samadi S (2011) Optimized ultrasonic assisted extraction-dispersive liquid-liquid microextraction coupled with gas chromatography for determination of essential oil of Oliveria decumbens Vent. J Chromatogr A 1218:4593–4598

    CAS  Google Scholar 

  121. Zang X, Wang J, Wang O, Wang M, Ma J, Xi G, Wang Z (2008) Analysis of captan, folpet, and captafol in apples by dispersive liquid-liquid microextraction combined with gas chromatography. Anal Bioanal Chem 392:749–754

    CAS  Google Scholar 

  122. Zhao E, Zhao W, Han L, Jiang S, Zhou Z (2007) Application of dispersive liquid-liquid microextraction for the analysis of organophosphorus pesticides in watermelon and cucumber. J Chromatogr A 1175:137–140

    CAS  Google Scholar 

  123. Farajzadeh MA, Djozan D, Mogaddam MRA, Bamorowat M (2011) Extraction and preconcentration technique for triazole pesticides from cow milk using dispersive liquid-liquid microextraction followed by GC-FID and GC-MS determinations. J Sep Sci 34:1309–1316

    CAS  Google Scholar 

  124. Kokya TA, Farhadi K, Kalhori AA (2012) Optimized dispersive liquid-liquid microextraction and determination of sorbic acid and benzoic acid in beverage samples by gas chromatography. Food Anal Methods 5:351–358

    Google Scholar 

  125. Kujawski MW, Pinteaux E, Namiesnik J (2012) Application of dispersive liquid-liquid microextraction for the determination of selected organochlorine pesticides in honey by gas chromatography–mass spectrometry. Eur Food Res Technol 234:223–230

    CAS  Google Scholar 

  126. Pizarro C, Sáenz-González C, Pérez-del-Notario N, González-Sáiz JM (2011) Development of a dispersive liquid-liquid microextraction method for the simultaneous determination of the main compounds causing cork taint and Brett character in wines using gas chromatography-tandem mass spectrometry. J Chromatogr A 1218:1576–1584

    CAS  Google Scholar 

  127. Sereshti H, Karimi M, Samadi S (2009) Application of response surface method for optimization of dispersive liquid-liquid microextraction of water-soluble components of Rosa damascena Mill. essential oil. J Chromatogr A 1216:198–204

    CAS  Google Scholar 

  128. Sereshti H, Samadi S, Jalali-Heravi M (2013) Determination of volatile components of green, black, oolong and white tea by optimized ultrasound-assisted extraction-dispersive liquid-liquid microextraction coupled with gas chromatography. J Chromatogr A 1280:1–8

    CAS  Google Scholar 

  129. Zacharis CK, Rotsias I, Zachariadis PG, Zotos A (2012) Dispersive liquid-liquid microextraction for the determination of organochlorine pesticides residues in honey by gas chromatography-electron capture and ion trap mass spectrometric detection. Food Chem 134:1665–1672

    CAS  Google Scholar 

  130. Han Y, Jia X, Duan T, Chen H (2011) Combination of saponification with in-tube liquid-liquid extraction and dispersive liquid-liquid microextraction for determination of polybrominated diphenyl ethers in whole milk by gas chromatography–mass spectrometry. Anal Methods 3:842–848

    CAS  Google Scholar 

  131. Han Y, Jia X, Liu X, Duan T, Chen H (2011) Dispersive solid-phase extraction combined with dispersive liquid-liquid microextraction for the determination of polybrominated diphenyl ethers in plastic bottled beverage by GC-MS. J Sep Sci 34:1047–1054

    CAS  Google Scholar 

  132. Huo X, Li Q, Lin X, Chen X, Bi K (2011) Application of dispersive liquid-liquid microextraction for the analysis of six fungicides in fruit samples by GC-ECD. Chromatographia 73:313–319

    CAS  Google Scholar 

  133. Montes R, Rodríguez I, Ramil M, Rubí E, Cela R (2009) Solid-phase extraction followed by dispersive liquid-liquid microextraction for the sensitive determination of selected fungicides in wine. J Chromatogr A 1216:5459–5466

    CAS  Google Scholar 

  134. Ghasemzadeh-Mohammadi V, Mohammadi A, Hashemi M, Khaksar R, Haratian P (2012) Microwave-assisted extraction and dispersive liquid-liquid microextraction followed by gas chromatography–mass spectrometry for isolation and determination of polycyclic aromatic hydrocarbons in smoked fish. J Chromatogr A 1237:30–36

    CAS  Google Scholar 

  135. Farajzadeh MA, Djozan D, Reza M, Mogaddam A, Norouzi J (2012) Determination of phthalate esters in cow milk samples using dispersive liquid-liquid microextraction coupled with gas chromatography followed by flame ionization and mass spectrometric detection. J Sep Sci 35:742–749

    CAS  Google Scholar 

  136. Farajzadeh MA, Djozan D, Bakhtiyari RF (2010) Use of a capillary tube for collecting an extraction solvent lighter than water after dispersive liquid-liquid microextraction and its application in the determination of parabens in different samples by gas chromatography-flame ionization detection. Talanta 81:1360–1367

    CAS  Google Scholar 

  137. Rodríguez-Cabo T, Rodríguez I, Ramil M, Cela R (2011) Dispersive liquid-liquid microextraction using non-chlorinated, lighter than water solvents for gas chromatography mass spectrometry determination of fungicides in wine. J Chromatogr A 1218:6603–6611

    Google Scholar 

  138. Sanagi MM, Abbas HH, Ibrahim WAW, Aboul-Enien HY (2012) Dispersive liquid-liquid microextraction method based on solidification of floating organic droplet for the determination of triazine herbicides in water and sugarcane samples. Food Chem 133:557–562

    CAS  Google Scholar 

  139. Matsadiq G, Hu HL, Ren HB, Zhou YW, Liu L, Cheng J (2011) Quantification of multi-residue levels in peach juices, pulps and peels using dispersive liquid-liquid microextraction based on floating organic droplet coupled with gas chromatography-electron capture detection. J Chromatogr B 879:2113–2118

    CAS  Google Scholar 

  140. Moinfar S, Milani Hosseini MR (2009) Development of dispersive liquid-liquid microextraction method for the analysis of organophosphorus pesticides in tea. J Hazard Mater 169:907–911

    CAS  Google Scholar 

  141. Jofre VP, Assof MV, Fanzone ML, Goicoechea HC, Martínez LD, Silva MF (2010) Optimization of ultrasound assisted-emulsification-dispersive liquid-liquid microextraction by experimental design methodologies for the determination of sulfur compounds in wines by gas chromatography–mass spectrometry. Anal Chim Acta 683:126–135

    CAS  Google Scholar 

  142. Sereshti H, Rohanifar A, Bakhtiari S, Samadi S (2012) Bifunctional ultrasound assisted extraction and determination of Elettaria cardamomum Maton essential oil. J Chromatogr A 1238:46–53

    CAS  Google Scholar 

  143. Jia C, Zhu X, Chen L, He M, Yu P, Zhao E (2010) Extraction of organophosphorus pesticides in water and juice using ultrasound-assisted emulsification-microextraction. J Sep Sci 33:244–250

    CAS  Google Scholar 

  144. Pizarro C, Sáenz-González C, Pérez-del-Notario N, González-Sáiz JM (2011) Ultrasound-assisted emulsification microextraction for the sensitive determination of Brett character responsible compounds in wines. J Chromatogr A 1218:8975–8981

    CAS  Google Scholar 

  145. Fontana AR, Patil SH, Banerjee K, Altamirano JC (2010) Ultrasound-assisted emulsification microextraction for determination of 2,4,6-trichloroanisole in wine samples by gas chromatography tandem mass spectrometry. J Agric Food Chem 58:4576–4581

    CAS  Google Scholar 

  146. Fontana AR, de Toro MM, Altamirano JC (2011) One-step derivatization and preconcentration microextraction technique for determination of bisphenol A in beverage samples by gas chromatography–mass spectrometry. J Agric Food Chem 59:3559–3565

    CAS  Google Scholar 

  147. Cortada C, Vidal L, Canals A (2011) Determination of geosmin and 2-methylisoborneol in water and wine samples by ultrasound-assisted dispersive liquid-liquid microextraction coupled to gas chromatography–mass spectrometry. J Chromatogr A 1218:17–22

    CAS  Google Scholar 

  148. Pizarro C, Sáenz-González C, Pérez-del-Notario N, González-Sáiz JM (2012) Development of an ultrasound-assisted emulsification-microextraction method for the determination of the main compounds causing cork taint in wines. J Chromatogr A 1229:63–71

    CAS  Google Scholar 

  149. Pizarro C, Sáenz-González C, Pérez-del-Notario N, González-Sáiz JM (2012) Optimisation of a sensitive method based on ultrasound-assisted emulsification-microextraction for the simultaneous determination of haloanisoles and volatile phenols in wine. J Chromatogr A 1244:37–45

    CAS  Google Scholar 

  150. Viñas P, Martínez-Castillo N, Campillo N, Hernández-Córdoba M (2010) Liquid-liquid microextraction methods based on ultrasound-assisted emulsification and single-drop coupled to gas chromatography–mass spectrometry for determining strobilurin and oxazole fungicides in juices and fruits. J Chromatogr A 1217:6569–6577

    Google Scholar 

  151. Pizarro C, Sáenz-González C, Pérez-del-Notario N, González-Sáiz JM (2012) Simultaneous determination of cork taint and Brett character responsible compounds in wine using ultrasound-assisted emulsification microextraction with solidification of floating organic drop. J Chromatogr A 1249:54–61

    CAS  Google Scholar 

  152. Pizarro C, Sáenz-González C, Pérez-del-Notario N, González-Sáiz JM (2012) Optimisation of ultrasound-assisted emulsification microextraction method with solidification of floating organic drop for the analysis of cork taint responsible compounds in wine. J Chromatogr A 1248:60–66

    CAS  Google Scholar 

  153. Du J, Yan H, She D, Liu B, Yang G (2010) Simultaneous determination of cypermethrin and permethrin in pear juice by ultrasound-assisted dispersive liquid-liquid microextraction combined with gas chromatography. Talanta 82:698–703

    CAS  Google Scholar 

  154. Yan H, Cheng X, Liu B (2011) Simultaneous determination of six phthalate esters in bottled milks using ultrasound-assisted dispersive liquid-liquid microextraction coupled with gas chromatography. J Chromatogr B 879:2507–2512

    CAS  Google Scholar 

  155. Yan H, Cheng X, Yan K (2012) Rapid screening of five phthalate esters from beverages by ultrasound-assisted surfactant-enhanced emulsification microextraction coupled with gas chromatography. Analyst 137:4860–4866

    CAS  Google Scholar 

  156. Fontana AR, Camargo AB, Altamirano JC (2010) Coacervative microextraction ultrasound-assisted back-extraction technique for determination of organophosphates pesticides in honey samples by gas chromatography–mass spectrometry. J Chromatogr A 1217:6334–6341

    CAS  Google Scholar 

  157. Cruz-Vera M, Lucena R, Cárdenas S, Valcárcel M (2011) Sample treatments based on dispersive (micro)extraction. Anal Methods 3:1719–1728

    CAS  Google Scholar 

  158. Martinis EM, Berton P, Monasterio RP, Wuilloud RG (2010) Emerging ionic liquid-based techniques for total-metal and metal-speciation analysis. Trends Anal Chem 29:1184–1201

    CAS  Google Scholar 

  159. Anthemidis AN, Mitani C (2013) Advances in liquid phase micro-extraction techniques for metal, metalloid and organometallic species determination. Curr Anal Chem 9:250–278

    CAS  Google Scholar 

  160. El-Shahawi MS, Al-Saidi HM (2013) Dispersive liquid-liquid microextraction for chemical speciation and determination of ultra-trace concentrations of metal ions. Trends Anal Chem 44:12–24

    CAS  Google Scholar 

  161. Clough R, Drennan-Harris LR, Harrington CF, Hill SJ, Tyson JF (2012) Atomic spectrometry update. Elemental speciation. J Anal At Spectrom 27:1185–1224

    CAS  Google Scholar 

  162. Taylor A, Day MP, Marshall J, Patriarca M, White M (2012) Atomic spectrometry update. Clinical and biological materials, foods and beverages. J Anal At Spectrom 27:537–576

    CAS  Google Scholar 

  163. Baliza PX, Gomes Teixeira LS, Lemos VA (2009) A procedure for determination of cobalt in water samples after dispersive liquid-liquid microextraction. Microchem J 93:220–224

    CAS  Google Scholar 

  164. Bidari A, Ganjali MR, Assadi Y, Kiani A, Norouzi P (2012) Assay of total mercury in commercial food supplements of marine origin by means of DLLME/ICP-AES. Food Anal Methods 5:695–701

    Google Scholar 

  165. Jiang H, Qin Y, Hu B (2008) Dispersive liquid phase microextraction (DLPME) combined with graphite furnace atomic absorption spectrometry (GFAAS) for determination of trace Co and Ni in environmental water and rice samples. Talanta 74:1160–1165

    CAS  Google Scholar 

  166. Mirabi A, Jamali MR, Mehraeen P, Berijani K (2012) Determination of trace amounts of nickel in food and environmental water samples by flame atomic absorption spectrometry after dispersive liquid-liquid microextraction. Asian J Chem 24:3425–3429

    CAS  Google Scholar 

  167. Sánchez Rojas F, Bosch Ojeda C, Cano Pavón JM (2011) Dispersive liquid-liquid microextraction combined with flame atomic absorption spectrometry for determination of cadmium in environmental, water and food samples. Anal Methods 3:1652–1655

    Google Scholar 

  168. Wen X, Yang Q, Yan Z, Deng Q (2011) Determination of cadmium and copper in water and food samples by dispersive liquid-liquid microextraction combined with UV–vis spectrophotometry. Microchem J 97:249–254

    CAS  Google Scholar 

  169. Abdolmohammad-Zadeh H, Sadeghi GH (2009) A novel microextraction technique based on 1-hexylpyridinium hexafluorophosphate ionic liquid for the preconcentration of zinc in water and milk samples. Anal Chim Acta 649:211–217

    CAS  Google Scholar 

  170. Abdolmohammad-Zadeh H, Sadeghi GH (2010) Combination of ionic liquid-based dispersive liquid–liquid micro-extraction with stopped-flow spectrofluorometry for the pre-concentration and determination of aluminum in natural waters, fruit juice and food samples. Talanta 81:778–785

    CAS  Google Scholar 

  171. Berton P, Martinis EM, Martinez LD, Wuilloud RG (2012) Selective determination of inorganic cobalt in nutritional supplements by ultrasound-assisted temperature-controlled ionic liquid dispersive liquid phase microextraction and electrothermal atomic absorption spectrometry. Anal Chim Acta 713:56–62

    CAS  Google Scholar 

  172. Chamsaz M, Atarodi A, Eftekhari M, Asadpour S, Adibi M (2013) Vortex-assisted ionic liquid microextraction coupled to flame atomic absorption spectrometry for determination of trace levels of cadmium in real samples. J Adv Res 4:35–41

    Google Scholar 

  173. Escudero LB, Martinis EM, Olsina RA, Wuilloud RG (2013) Arsenic speciation analysis in mono-varietal wines by on-line ionic liquid-based dispersive liquid-liquid microextraction. Food Chem 138:484–490

    CAS  Google Scholar 

  174. Gharehbaghi M, Shemirani F (2011) Ionic liquid-based dispersive liquid-liquid microextraction and enhanced spectrophotometric determination of molybdenum(VI) in water and plant leaves samples by FO-LADS. Food Chem Toxicol 49:423–428

    CAS  Google Scholar 

  175. Khani R, Shemirani F (2010) Determination of trace levels of nickel and manganese in soil, vegetable, and water. Clean Soil Air Water 38:1177–1183

    CAS  Google Scholar 

  176. Martinis EM, Escudero LB, Berton P, Monasterio RP, Filippini MF, Wuilloud RG (2011) Determination of inorganic selenium species in water and garlic samples with on-line ionic liquid dispersive microextraction and electrothermal atomic absorption spectrometry. Talanta 85:2182–2188

    CAS  Google Scholar 

  177. Mahpishanian S, Shemirani F (2010) Preconcentration procedure using in situ solvent formation microextraction in the presence of ionic liquid for cadmium determination in saline samples by flame atomic absorption spectrometry. Talanta 82:471–476

    CAS  Google Scholar 

  178. Majidi B, Shemirani F (2011) In situ solvent formation microextraction in the presence of ionic liquid for preconcentration and speciation of arsenic in saline samples and total arsenic in biological samples by electrothermal atomic absorption spectrometry. Biol Trace Elem Res 143:579–590

    CAS  Google Scholar 

  179. Vaezzadeh M, Shemirani F, Majidi B (2010) Microextraction technique based on ionic liquid for preconcentration and determination of palladium in food additive, sea water, tea and biological samples. Food Chem Toxicol 48:1455–1460

    CAS  Google Scholar 

  180. Zarei Z, Shemirani F (2012) Determination of nickel in food samples by flame atomic absorption spectroscopy after preconcentration and microextraction based ionic liquids using full factorial and central composite design. J Food Sci 77:C1242–C1248

    Google Scholar 

  181. Zeeb M, Ganjali MR, Norouzi P, Kalaee MR (2011) Separation and preconcentration system based on microextraction with ionic liquid for determination of copper in water and food samples by stopped-flow injection spectrofluorimetry. Food Chem Toxicol 49:1086–1091

    CAS  Google Scholar 

  182. Zeeb M, Sadeghi M (2011) Modified ionic liquid cold-induced aggregation dispersive liquid-liquid microextraction followed by atomic absorption spectrometry for trace determination of zinc in water and food samples. Microchim Acta 175:159–165

    CAS  Google Scholar 

  183. Asadollahi T, Dadfarnia S, Shabani AMH (2010) Separation/preconcentration and determination of vanadium with dispersive liquid–liquid microextraction based on solidification of floating organic drop (DLLME-SFO) and electrothermal atomic absorption spectrometry. Talanta 82:208–212

    CAS  Google Scholar 

  184. Bahar S, Zakerian R (2012) Determination of copper in human hair and tea samples after dispersive liquid-liquid microextraction based on solidification of floating organic drop (DLLME-SFO). J Braz Chem Soc 23:1166–1173

    CAS  Google Scholar 

  185. Jafarvand S, Shemirani F (2011) Supramolecular-based dispersive liquid-liquid microextraction: determination of cadmium in water and vegetable samples. Anal Methods 3:1552–1559

    CAS  Google Scholar 

  186. Wu C, Zhao B, Li Y, Wu Q, Wang C, Wang Z (2011) Development of dispersive liquid-liquid microextraction based on solidification of floating organic drop for the sensitive determination of trace copper in water and beverage samples by flame atomic absorption spectrometry. Bull Korean Chem Soc 32:829–835

    CAS  Google Scholar 

  187. Wu CX, Wu QH, Wang C, Wang Z (2011) A novel method for the determination of trace copper in cereals by dispersive liquid-liquid microextraction based on solidification of floating organic drop coupled with flame atomic absorption spectrometry. Chin Chem Lett 22:473–476

    CAS  Google Scholar 

  188. Wu Q, Wu C, Wang C, Lu X, Li X, Wang Z (2011) Sensitive determination of cadmium in water, beverage and cereal samples by a novel liquid-phase microextraction coupled with flame atomic absorption spectrometry. Anal Methods 3:210–216

    CAS  Google Scholar 

  189. Khayatian G, Hassanpoor S (2013) Development of ultrasound-assisted emulsification solidified floating organic drop microextraction for determination of trace amounts of iron and copper in water, food and rock samples. J Iran Chem Soc 10:113–121

    CAS  Google Scholar 

  190. Baliza PX, Martins Cardoso LA, Lemos VA (2012) A preconcentration procedure for the determination of cadmium in biological material after on-line cloud point extraction. Environ Monit Assess 184:4455–4460

    CAS  Google Scholar 

  191. Anthemidis AN, Ioannou KIG (2009) On-line sequential injection dispersive liquid-liquid microextraction system for flame atomic absorption spectrometric determination of copper and lead in water samples. Talanta 79:86–91

    CAS  Google Scholar 

  192. Arce L, Nozal L, Simonet BM, Ríos A, Valcárcel M (2009) Liquid-phase microextraction techniques for simplifying sample treatment in capillary electrophoresis. Trends Anal Chem 28:842–853

    CAS  Google Scholar 

  193. Bosch Ojeda C, Sánchez Rojas F (2009) Separation and preconcentration by dispersive liquid-liquid microextraction procedure: a review. Chromatographia 69:1149–1159

    CAS  Google Scholar 

  194. Zang XH, Wu QH, Zhang MY, Xi GH, Wang Z (2009) Developments of dispersive liquid-liquid microextraction technique. Chin J Anal Chem 37:161–168

    CAS  Google Scholar 

  195. Aguilera-Herrador E, Lucena R, Cárdenas S, Valcárcel M (2010) The roles of ionic liquids in sorptive microextraction techniques. Trends Anal Chem 29:602–616

    CAS  Google Scholar 

  196. Dadfarnia S, Shabani AMH (2010) Recent development in liquid phase microextraction for determination of trace level concentration of metals—a review. Anal Chim Acta 658:107–119

    CAS  Google Scholar 

  197. Herrera-Herrera AV, Asensio-Ramos M, Hernández-Borges J, Rodríguez-Delgado MA (2010) Dispersive liquid-liquid microextraction for determination of organic analytes. Trends Anal Chem 29:728–751

    CAS  Google Scholar 

  198. Pena-Pereira F, Lavilla I, Bendicho C (2010) Liquid-phase microextraction approaches combined with atomic detection: a critical review. Anal Chim Acta 669:1–16

    CAS  Google Scholar 

  199. Sarafraz-Yazdi A, Amiri A (2010) Liquid-phase microextraction. Trends Anal Chem 29:1–14

    CAS  Google Scholar 

  200. Asensio-Ramos M, Ravelo-Pérez LM, González-Curbelo MA, Hernández-Borges J (2011) Liquid phase microextraction applications in food analysis. J Chromatogr A 1218:7415–7437

    CAS  Google Scholar 

  201. Bosch Ojeda C, Sánchez Rojas F (2011) Separation and preconcentration by dispersive liquid-liquid microextraction procedure: recent applications. Chromatographia 74:651–679

    Google Scholar 

  202. Cobzac SC, Gocan S (2011) Sample preparation for high performance liquid chromatography: recent progress. J Liq Chromatogr Relat Technol 34:1157–1267

    CAS  Google Scholar 

  203. Mahugo-Santana C, Sosa-Ferrera Z, Torres-Padrón ME, Santana-Rodríguez JJ (2011) Application of new approaches to liquid-phase microextraction for the determination of emerging pollutants. Trends Anal Chem 30:731–748

    CAS  Google Scholar 

  204. Nuhu AA, Basheer C, Saad B (2011) Liquid-phase and dispersive liquid–liquid microextraction techniques with derivatization: recent applications in bioanalysis. J Chromatogr B 879:1180–1188

    CAS  Google Scholar 

  205. Zgoła-Grześkowiak A, Grześkowiak T (2011) Dispersive liquid-liquid microextraction. Trends Anal Chem 30:1382–1399

    Google Scholar 

  206. Zhao Q, Anderson JL (2011) Task-specific microextractions using ionic liquids. Anal Bioanal Chem 400:1613–1618

    CAS  Google Scholar 

  207. Abdulra'uf LB, Sirhan AY, Tan GH (2012) Recent developments and applications of liquid phase microextraction in fruits and vegetables analysis. J Sep Sci 35:3540–3553

    Google Scholar 

  208. Andruch V, Kocúrová L, Balogh IS, Skrlikova J (2012) Recent advances in coupling single-drop and dispersive liquid-liquid microextraction with UV–vis spectrophotometry and related detection techniques. Microchem J 102:1–10

    CAS  Google Scholar 

  209. Burguera JL, Burguera M (2012) Analytical applications of emulsions and microemulsions. Talanta 96:11–20

    CAS  Google Scholar 

  210. Abadi MDM, Ashraf N, Chamsaz M, Shemirani F (2012) An overview of liquid phase microextraction approaches combined with UV–vis spectrophotometry. Talanta 99:1–12

    CAS  Google Scholar 

  211. Han D, Row KH (2012) Trends in liquid-phase microextraction, and its application to environmental and biological samples. Microchim Acta 176:1–22

    CAS  Google Scholar 

  212. Han D, Tang B, Lee YR, Row KH (2012) Application of ionic liquid in liquid phase microextraction technology. J Sep Sci 35:2949–2961

    CAS  Google Scholar 

  213. Kocúrová L, Balogh IS, Šandrejová J, Andruch V (2012) Recent advances in dispersive liquid-liquid microextraction using organic solvents lighter than water. A review. Microchem J 102:11–17

    Google Scholar 

  214. Ma J, Lu W, Chen L (2012) Recent advances in dispersive liquid-liquid microextraction for organic compounds analysis in environmental water: a review. Curr Anal Chem 8:78–90

    Google Scholar 

  215. Ramos L (2012) Critical overview of selected contemporary sample preparation techniques. J Chromatogr A 1221:84–98

    CAS  Google Scholar 

  216. Vickackaite V, Padarauskas A (2012) Ionic liquids in microextraction techniques. Cent Eur J Chem 10:652–674

    Google Scholar 

  217. Wen Y, Li J, Ma J, Chen L (2012) Recent advances in enrichment techniques for trace analysis in capillary electrophoresis. Electrophoresis 33:2933–2952

    CAS  Google Scholar 

  218. Al-Saidi HM, Emara AAA (2013) The recent developments in dispersive liquid–liquid microextraction for preconcentration and determination of inorganic analytes. J Saudi Chem Soc. doi:10.1016/j.jscs.2011.11.005

    Google Scholar 

  219. Andruch V, Balogh IS, Kocúrová L, Šandrejová J (2013) Five years of dispersive liquid-liquid microextraction. Appl Spectrosc Rev 48:161–259

    CAS  Google Scholar 

  220. Andruch V, Balogh IS, Kocúrová L, Šandrejová J (2013) The present state of coupling of dispersive liquid-liquid microextraction with atomic absorption spectrometry. J Anal At Spectrom 28:19–32

    CAS  Google Scholar 

  221. Andruch V, Burdel M, Kocúrová L, Šandrejová J, Balogh IS (2013) Application of ultrasonic irradiation and vortex agitation in solvent microextraction. Trends Anal Chem 49:1–19

    CAS  Google Scholar 

  222. Hu B, He M, Chen B, Xia L (2013) Liquid phase microextraction for the analysis of trace elements and their speciation. Spectrochim Acta B. doi:10.1016/j.sab.2013.05.025

    Google Scholar 

  223. Kokosa JM (2013) Advances in solvent-microextraction techniques. Trends Anal Chem 43:2–13

    CAS  Google Scholar 

  224. Miró M, Hansen EH (2013) On-line sample processing involving microextraction techniques as a front-end to atomic spectrometric detection for trace metal assays: a review. Anal Chim Acta 782:1–11

    Google Scholar 

  225. Yan H, Wang H (2013) Recent development and applications of dispersive liquid–liquid microextraction. J Chromatogr A 1295:1–15

    CAS  Google Scholar 

  226. Yang J, Li D, Sun C (2012) Simultaneous determination of eleven preservatives in foods using ultrasound-assisted emulsification micro-extraction coupled with gas chromatography–mass spectrometry. Anal Methods 4:3436–3442

    CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support from the Comunidad Autónoma de la Región de Murcia (Fundación Séneca projects 15217/PI/10 and 11796/PI/09), the Spanish Ministry of Economy and Competitiveness (project CTQ2012-34772), and the European Commission (FEDER/ERDF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pilar Viñas.

Additional information

Published in the topical collection Microextraction Techniques with guest editors Miguel Valcárcel Cases, Soledad Cárdenas Aranzana and Rafael Lucena Rodríguez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Viñas, P., Campillo, N., López-García, I. et al. Dispersive liquid–liquid microextraction in food analysis. A critical review. Anal Bioanal Chem 406, 2067–2099 (2014). https://doi.org/10.1007/s00216-013-7344-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-7344-9

Keywords

Navigation