Skip to main content
Log in

Thermochemical and detonation performance of boron-nitride analogues of organic azides and benzotrifuroxan as novel high energetic nitrogen-rich precursors

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Structural and thermochemical properties of boron-nitride analogues of organic azides and benzotrifuroxan, as novel high energetic nitrogen-rich precursors, were studied using M06-2X/6-311G(d,p) and B3LYP/6-311G(d,p) density functional methods. The influence of azido (N3) group was investigated for the stability, molecular volume, molecular surface area, crystal density, positive, negative and total average potentials, variances, average deviation and electrostatic balance parameter on the molecular surface. It was found that crystal density and enthalpy of sublimation of azidoborazines are distinctly augmented by increasing the numbers of azido substituents. Meanwhile, the stability of these compounds decreases significantly. The B-substituted azidoborazines are more stable than N-substituted ones. Crystal densities of B-substituted di- and triazidoborazines are also larger than N-substituted compounds. Since the condensed-phase enthalpies of formation of azidoborazines are more positive than nitro and nitraminoborazines, these compounds have greater detonation performance. Detonation pressure and velocity of both triazidotrinitroborazines and boron-nitride analogue of benzotrifuroxan are larger than 2,4,6-trinitrotoluene (TNT). Detonation performances of these compounds are also between cyanuric triazide and triazidotrinitrobenzene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. C.L. Mader, FORTRAN BKW: a code for computing the detonation properties of explosives, Los Alamos Scientific Laboratory report LA-3704 (1967)

  2. J.P. Lu, Evaluation of the Thermochemical Code—CHEETAH 2.0 for Modeling Explosives Performance, DSTO-DR-1199, Defence Science and Technology Organization, Australian Government, Edinburgh (2001)

  3. G. Sanford, B.J. McBride, Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications I. Analysis, vol. 1331, (NASA Reference Publication, Washington DC, 1994)

  4. M. Suceska, EXPLO5 Program, Version 5.04, (Zagreb, Croatia, 2010)

  5. ICT Thermodynamic Code, Version 1.00, (Fraunhofer Institut Chemische Technologie, ICT 1998–2000)

  6. J.S. Murray, T. Brinck, P. Politzer, Chem. Phys. 204, 289 (1996)

    Article  CAS  Google Scholar 

  7. P. Politzer, J.S. Murray, M.E. Grice, M. Desalvo, E. Miller, Mol. Phys. 91, 923 (1997)

    Article  CAS  Google Scholar 

  8. J.S. Murray, P. Politzer, J. Mol. Struct. Theochem. 425, 107 (1998)

    Article  CAS  Google Scholar 

  9. P. Politzer, Y. Ma, P. Lane, M.C. Concha, Int. J. Quantum Chem. 105, 341 (2005)

    Article  CAS  Google Scholar 

  10. F.A. Bulat, A. Toro-Labbé, T. Brinck, J.S. Murray, P. Politzer, J. Mol. Model. 16, 1679 (2010)

    Article  CAS  Google Scholar 

  11. B.M. Rice, S.V. Pai, J. Hare, Combust. Flame 118, 445 (1999)

    Article  CAS  Google Scholar 

  12. B.M. Rice, J.J. Hare, J. Phys. Chem. A 106, 1770 (2002)

    Article  CAS  Google Scholar 

  13. E.F.C. Byrd, B.M. Rice, J. Phys. Chem. A 110, 1005 (2006)

    Article  CAS  Google Scholar 

  14. L.-W. Shi, J.-H. Zhou, T. Zhang, Q. Kang, M.-B. Chen, Chin. J. Chem. 26, 1181 (2008)

    Article  CAS  Google Scholar 

  15. M. Jaidann, S. Roy, H. Abou-Rachid, L.-S. Lussier, J. Hazard. Mater. 176, 165 (2010)

    Article  CAS  Google Scholar 

  16. H. Singh, U. Mukherjee, R.S. Saini, J. Energ. Mater. 30, 265 (2012)

    Article  CAS  Google Scholar 

  17. M.H. Keshavarz, M. Zamani, F. Atabaki, K.H. Monjezi, Comput. Theoret. Chem. 1006, 105 (2013)

    Article  CAS  Google Scholar 

  18. M.H. Keshavarz, M. Zamani, F. Atabaki, K.H. Monjezi, Comput. Theoret. Chem. 1011, 30 (2013)

    Article  CAS  Google Scholar 

  19. M.H. Keshavarz, Ind. J. Eng. Mater. Sci. 14, 386 (2007)

    CAS  Google Scholar 

  20. M.H. Keshavarz, J. Hazard. Mater. 150, 387 (2008)

    Article  CAS  Google Scholar 

  21. A. Semnani, M.H. Keshavarz, J. Hazard. Mater. 178, 264 (2010)

    Article  CAS  Google Scholar 

  22. Y.M. Oskoei, M.H. Keshavarz, Fluid Phase Equilib. 36, 1 (2012)

    Article  Google Scholar 

  23. M.H. Keshavarz, H.R. Pouretedal, Fluid Phase Equilib. 298, 24 (2010)

    Article  CAS  Google Scholar 

  24. M.H. Keshavarz, S. Zakinejad, K. Esmailpour, Fluid Phase Equilib. 340, 52 (2013)

    Article  CAS  Google Scholar 

  25. M.H. Keshavarz, J. Hazard. Mater. 151, 499 (2008)

    Article  CAS  Google Scholar 

  26. M.H. Keshavarz, M.H. Yousefi, J. Hazard. Mater. 152, 929 (2008)

    Article  CAS  Google Scholar 

  27. M.H. Keshavarz, J. Hazard. Mater. 177, 648 (2010)

    Article  CAS  Google Scholar 

  28. M.H. Keshavarz, Ind. J. Eng. Mater. Sci. 13, 542 (2006)

    CAS  Google Scholar 

  29. M.H. Keshavarz, M.K. Tehrani, Propell. Explos. Pyrot. 32, 155 (2007)

    Article  CAS  Google Scholar 

  30. M.H. Keshavarz, M. Oftadeh, High Temp High Press. 35, 499 (2003)

    Article  Google Scholar 

  31. M.H. Keshavarz, J. Hazard. Mater. 169, 890 (2009)

    Article  CAS  Google Scholar 

  32. M.H. Keshavarz, H. Sadeghi, J. Hazard. Mater. 171, 140 (2009)

    Article  CAS  Google Scholar 

  33. M.H. Keshavarz, J. Hazard. Mater. 190, 330 (2011)

    Article  CAS  Google Scholar 

  34. C.L. Mader, Numerical modeling of explosives and propellants, 3rd edn. (CRC Press, Boca Raton, 2008)

    Google Scholar 

  35. J.P. Agrawal, High energy materials, propellants, explosives and pyrotechnics (Wiley-VCH, Weinheim, 2010)

    Google Scholar 

  36. M.H. Keshavarz, H. Motamedoshariati, R. Moghayadnia, H.R. Nazari, J. Azarniamehraban, J. Hazard. Mater. 172, 1218 (2009)

    Article  CAS  Google Scholar 

  37. M.H. Keshavarz, H. Motamedoshariati, R. Moghayadnia, M. Ghanbarzadeh, J. Azarniamehraban, Propell. Explos. Pyrot. 38, 95 (2013)

    Article  CAS  Google Scholar 

  38. J.P. Agrawal, R.D. Hodgson, Organic Chemistry of Explosives (John Wiley & Sons, Chichester, 2007)

    Google Scholar 

  39. R. Matyas, J. Pachman, Primary explosives (Springer-Verlag, Berlin, 2013)

    Book  Google Scholar 

  40. M.W. Chase Jr, J. Phys. Chem. Ref. Data Monograph 9, 1 (1998)

    Google Scholar 

  41. J.D. Janning, D.W. Ball, J. Mol. Model. 16, 857 (2010)

    Article  CAS  Google Scholar 

  42. M. Zamani, M.H. Keshavarz, Cent. Eur. J. Energ. Mater. 11, 363 (2014)

    Google Scholar 

  43. M. Zamani, M.H. Keshavarz, Comput. Mater. Sci. 97, 295 (2014)

    Article  Google Scholar 

  44. H. Steinberg, R.J. Brotherton, Organoboron chemistry, vol. II (John Wiley, New York, 1966)

    Google Scholar 

  45. K.A. Muszkat, L. Hill, B. Kirson, Israel J. Chem. 1, 27 (1963)

    Article  CAS  Google Scholar 

  46. R.T. Paine, W. Koestle, T.T. Borek, G.L. Wood, E.A. Pruss, E.N. Dueslernd, M.A. Hiskey, Inorg. Chem. 38, 3738 (1999)

    Article  CAS  Google Scholar 

  47. H. Bock, K.L. Kompa, Angew. Chem. internat. Edit. 1, 264 (1962)

    Article  Google Scholar 

  48. R.B. Steele, N-azidoamines and –amides as possible synthons, (Georgeville, Quebec, Canada, 2004), http://www.chemexplore.net/azidoamines. Accessed 27 May 2004

  49. P. Politzer, J. Martinez, J.S. Murray, M.C. Concha, A. Toro-Labbe, Mol. Phys. 107, 2095 (2009)

    Article  CAS  Google Scholar 

  50. S. Grimme, J. Comput. Chem. 25, 1463 (2004)

    Article  CAS  Google Scholar 

  51. S. Grimme, J. Comput. Chem. 27, 1787 (2006)

    Article  CAS  Google Scholar 

  52. S. Grimme, J. Anthony, S. Ehrlich, H. Krieg, J. Chem. Phys. 132, 154104 (2010)

    Article  Google Scholar 

  53. S. Grimme, WIREs Comput. Mol. Sci. 1, 211 (2011)

    Article  CAS  Google Scholar 

  54. Y. Zhao, D.G. Truhlar, Theoret. Chem. Acc. 120, 215 (2008)

    Article  CAS  Google Scholar 

  55. NIST Standard Reference Data Base Number 69, which can be accessed electronically through the NIST Chemistry Web Book http://webbook.nist.gov/chemistry/. (references for individual molecules are given therein). Accessed 6 May 2013

  56. O.V. Dorofeeva, O.N. Ryzhova, M.A. Suntsova, J. Phys. Chem. A 117, 6835 (2013)

    Article  CAS  Google Scholar 

  57. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A Robb, J.R. Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J. M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 09, Revision A.02, (Gaussian, Inc, Wallingford, CT, 2009)

  58. W.M. Haynes, D.R. Lide, CRC Handbook of Chemistry and Physics, 93rd edn. (CRC Press, Boca Raton, 2012)

    Google Scholar 

  59. http://en.wikipedia.org/wiki/Cyanuric_triazide. Accessed 6 May 2013

Download references

Acknowledgments

We would like to thank the research committee of Malek-ashtar University of Technology (MUT) for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Hossein Keshavarz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zamani, M., Keshavarz, M.H. Thermochemical and detonation performance of boron-nitride analogues of organic azides and benzotrifuroxan as novel high energetic nitrogen-rich precursors. J IRAN CHEM SOC 12, 1077–1087 (2015). https://doi.org/10.1007/s13738-014-0568-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-014-0568-6

Keywords

Navigation