Skip to main content
Log in

Synthesis, CMC determination and nucleic acid-binding interaction of a surfactant copper(II) complex containing amino acid–Schiff base ligand:[Cu(sal-ala)(bpy)(DA)]

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

The surfactant copper(II) complex, [Cu(sal-ala)(bpy)(DA)] (sal-ala = amino acid Schiff base, bpy = 2,2′-bipyridyl, DA = dodecylamine) has been synthesized and characterized by elemental analysis, UV–Vis, IR and EPR spectra. The critical micelle concentration (CMC) values of this surfactant copper(II) complex in aqueous solution was obtained from conductance measurements. Specific conductivity data (at 303, 308, 313. 318 and 323 K) served for the evaluation of the temperature-dependent CMC and the thermodynamics of micellization (Δ\(G_{\text{m}}^0\), Δ\(H_{\text{m}}^0\) and Δ\(S_{\text{m}}^0\)). Absorption, fluorescence, cyclic voltammetry, circular dichroism spectroscopy and viscosity experiments have been carried to study the interaction of this surfactant complex with nucleic acids. The results suggest that the complex could bind to nucleic acids by intercalation via salicylidene aromatic chromophore into the base pairs of CT DNA. The long aliphatic chain of the surfactant complex increases the hydrophobic interaction between the complex and nucleic acid. The surfactant copper(II) complex was screened for their antibacterial and antifungal activities against various microorganisms. The results were compared with the standard drugs, amikacin (antibacterial) and ketokonazole (antifungal).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. A.E. Martell, B. Szpoganicz, Inorg. Chem. 28, 4199 (1989)

    Article  CAS  Google Scholar 

  2. I.I. Mathews, P.A. Joy, S. Vasudevan, H. Manohar, Inorg. Chem. 30, 2181 (1991)

    Article  CAS  Google Scholar 

  3. J.W. Pyrz, A.L. Roe, L.J. Stern, J.L. Que, J. Am. Chem. Soc. 107, 614 (1985)

    Article  CAS  Google Scholar 

  4. A. Angoso, J.M. Martin-Llorente, J.L. Manzano, M. Martin, R. Martin, E. Rodriguez, J. Soria, Inorg. Chim. Acta 195, 45 (1992)

    Article  CAS  Google Scholar 

  5. K. Nejati, Z. Rezvani, B. Massoumi, Dyes Pigm. 75, 653 (2007)

    Article  CAS  Google Scholar 

  6. S. Bhattacharya, S.S. Mandal, Biochim. Biophys. Acta 1323, 29 (1997)

    Article  CAS  Google Scholar 

  7. T. Hermann, Curr. Opin. Struct. Biol. 15, 355 (2005)

    Article  CAS  Google Scholar 

  8. J.R. Thomas, P.J. Hergenrother, Chem. Rev. 108, 1171 (2008)

    Article  CAS  Google Scholar 

  9. J. Gallego, G. Varani, Acc. Chem. Res. 34, 836 (2001)

    Article  CAS  Google Scholar 

  10. C.S. Chow, J.K. Barton, Biochemistry 31, 5423 (1992)

    Article  CAS  Google Scholar 

  11. H. Xu, H. Deng, Q.L. Zhang, Y. Huang, J.Z. Liu, L.N. Ji, Inorg. Chem. Commun. 6, 766 (2003)

    Article  CAS  Google Scholar 

  12. Y. Tor, Chem. Bio. Chem. 4, 998 (2003)

    Article  CAS  Google Scholar 

  13. T. Hermann, Biopolymers 70, 4 (2003)

    Article  CAS  Google Scholar 

  14. S. Kashanian, M.B. Gholivand, F. Ahmadi, A. Taravati, A.H. Colagar, Spectrochim. Acta. A 67, 472 (2007)

    Article  CAS  Google Scholar 

  15. V. Uma, M. Kanthimathi, T. Weyhermuller, B.U. Nair, J. Inorg. Biochem. 99, 2299 (2005)

    Article  CAS  Google Scholar 

  16. K. Nagaraj, S. Arunachalam, New J. Chem (2014). doi:10.1039/c3nj00832k

    Google Scholar 

  17. K. Nagaraj, S. Arunachalam, Aust. J. Chem. 66, 930 (2013)

    Article  CAS  Google Scholar 

  18. K. Nagaraj, S. Arunachalam, J. Biomol. Struct. Dyn. (2014). doi:10.1080/07391102.2013.879837

    Google Scholar 

  19. K. Nagaraj, S. Arunachalam, Trans. Met. Chem. 38, 649 (2013)

    Article  CAS  Google Scholar 

  20. K. Nagaraj, S. Arunachalam, J. Inclu. Phenom. Macro. Chem. (2013). doi:10.1007/s10847-013-0365-3

    Google Scholar 

  21. K. Nagaraj, S. Sakthinathan, S. Arunachalam, J. Fluores. (2013). doi:10.1007/s10895-013-1332-5

    Google Scholar 

  22. K. Nagaraj, S. Ambika, S. Rajasri, S. Sakthinatan, S. Arunachalam, Colloids Surf. B Biointerfaces (in press)

  23. T.P. Ndifon, O.A. Moise, N.N. Julius, D.Y. Mbom, G.P. Awawou, D.N. Lynda, Res. J. Chem. Environ. 14(2), (2010)

  24. M.F. Reichmann, S.A. Rice, C.A. Thomas, P. Doty, J. Am. Chem. Soc. 76, 3047 (1954)

    Article  CAS  Google Scholar 

  25. L.D. Skarsgard, M.W. Skwarchuk, A. Vinczan, D.J. Chaplin, J. Cancer 68, 681 (1993)

    Article  CAS  Google Scholar 

  26. M.L. Morris, D.H. Busch, J. Am. Chem. Soc. 82, 1521 (1960)

    Article  CAS  Google Scholar 

  27. T.M. Dunn, The visible and ultraviolet spectra of complex compounds in modern coordination chemistry (Interscience, New York, 1960)

    Google Scholar 

  28. B. Singh, B.P. Yadav, R.C. Agarwal, Ind. J. Chem. 23A, 441 (1984)

    CAS  Google Scholar 

  29. A. Garcia-Raso, Polyhedron 18, 871 (1999)

    Article  CAS  Google Scholar 

  30. I. Cavacio, J.C. Pessoa, D. Coasta, M.T. Duarte, R.D. Gillard, P. Madias, J. Chem. Soc. Dalton. Trans. 149–157 (1994)

  31. R. Gupta, T.K. Lal, R. Mukherjee, Polyhedron 21, 1245 (2002)

    Article  CAS  Google Scholar 

  32. G. Speie, J. Csihony, A.M. Whalen, C.G. Pie, Inorg. Chem. 35, 3519 (1996)

    Article  Google Scholar 

  33. N. Kumaraguru, S. Arunachalam, M.N. Arumugam, K. Santhakumar, Trans. Met. Chem. 31, 250 (2006)

    Article  CAS  Google Scholar 

  34. K. Santhakumar, N. Kumaraguru, M.N. Arumugam, S. Arunachalam, Polyhedron 25, 1507 (2006)

    Article  CAS  Google Scholar 

  35. P. Mukerjee, J. Phys. Chem. 66, 1375 (1962)

    Article  CAS  Google Scholar 

  36. R. Zana, J. Colloid, Interface Sci. 78, 330 (1980)

    Article  CAS  Google Scholar 

  37. J.J.H. Nusselder, J.B.F.N. Engberts, J. Colloid, Interface Sci. 148, 353 (1992)

    Article  CAS  Google Scholar 

  38. A.M. Pyle, J.P. Rehmann, R. Meshoyrer, C.V. Kumar, N.J. Turro, J.K. Barton, J. Am. Chem. Soc. 111, 3051 (1989)

    Article  CAS  Google Scholar 

  39. E.C. Long, J.K. Barton, Acc. Chem. Res. 23, 271 (1990)

    Article  CAS  Google Scholar 

  40. G. Son, J. Yeo, M. Kim, S. Kim, A. Holmen, B. Akerman, B. Norden, J. Am. Chem. Soc. 120, 6451 (1998)

    Article  CAS  Google Scholar 

  41. Z.Q. Liu, Y.T. Li, Z.Y. Wu, S.F. Zhang, Inorg. Chim. Acta 362, 71 (2009)

    Article  CAS  Google Scholar 

  42. R. Senthil Kumar, S. Arunachalam, V.S. Periasamy, C.P. Preethy, A.M.A. Riyasdeen Akbarsha, J. Inorg. Biochem. 103, 117 (2009)

    Article  Google Scholar 

  43. S.S. Zhang, S.Y. Niu, B. Qu, G.F. Jie, H. Xu, C.F. Ding, J. Inorg. Biochem. 99, 2340 (2005)

    Article  CAS  Google Scholar 

  44. M.T. Carter, M. Rodriguez, A.J. Bard, J. Am. Chem. Soc. 111, 8901 (1989)

    Article  CAS  Google Scholar 

  45. G. Zhao, H. Lin, S. Zhu, H. Sun, Y. Chen, J. Inorg. Biochem. 70, 219 (1998)

    Article  CAS  Google Scholar 

  46. J.R. Lakowicz, G. Webber, Biochemistry 12, 4161 (1973)

    Article  CAS  Google Scholar 

  47. V.I. Ivanov, L.E. Minchenkova, A.K. Shchelkina, A.I. Poletaev, Biopolymers 12, 89 (1973)

    Article  CAS  Google Scholar 

  48. P. Lincoln, E. Tuite, B. Norden, J. Am. Chem. Soc. 119, 1454 (1997)

    Article  CAS  Google Scholar 

  49. B. Norden, F. Tjerneld, Biopolymers 21, 1713 (1982)

    Article  CAS  Google Scholar 

  50. S. Satyanaryana, J.C. Daborusak, J.B. Chaires, Biochemistry 32, 2573 (1993)

    Article  Google Scholar 

  51. S. Satyanaryana, J.C. Daborusak, J.B. Chaires, Biochemistry 31, 9319 (1992)

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to the UGC-COSIST and DST-FIST programmes of the Department of Chemistry, Bharathidasan University, and UGC-RFSMS fellowship to one of the authors, K. Nagaraj, by Bharathidasan University. Financial assistance from the CSIR (Grant No. 01(2461)/11/EMR-II), DST (Grant No. SR/S1/IC-13/2009) and UGC (Grant No. 41-223/2012(SR) sanctioned to S. Arunachalam are also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sankaralingam Arunachalam.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1180 kb)

Supporting Information: Supporting Information should be attached at the end of the article or separated file.

Fig.S1. EPR spectrum of [Cu(sal-ala)(bpy)(DA)] at LNT (liquid nitrogen temperature)

Fig.S2. Emission spectra of EB bound to CT DNA: (A). in the absence of the surfactant copper(II) complex (dotted line) and in the presence of the complex (solid line). {Insets: Plot of [complex]/[DNA] vs I/Io}. [DNA] = 1 × 10−4 M; [complex] = 1.5 × 10−4 M; (B). Emission spectra of EB bound to RNA: in the absence of the complex (dotted line) and in the presence of the complex. {Insets: Plot of [complex]/[RNA] vs I/Io}. [RNA] = 1 × 10−4 M; [complex] = 4 × 10−5 M.

Fig.S3. (A). CV spectra of [Cu(sal-ala)(bpy)(DA)] in the absence (black line) and in the presence (red line) of CT DNA. {Inset: Plot of v1/2 (mV/s) vs. current(µA)}. [complex] = 1 × 10−3 M; [DNA] = 0–2.68 × 10−5 M; (B). In the absence (dotted line) and in the presence (solid line) of RNA. [complex] = 1 × 10−3 M; [RNA] = 0–2.68 × 10−5 M.

Fig.S4. Circular dichroism spectra in the absence (dotted line) and in the presence of surfactant metal complex [Cu(sal-ala)(bpy)(DA)]. [complex] = 1 × 10−5M; [DNA] = 1 × 10−4 M.

Fig.S5. Effects of increasing amounts of complex [Cu(sal-ala)(bpy)(DA)] (•) and complex [Cu(sal-ala)(bpy)(H2O)] (■) on the relative viscosities of calf thymus DNA at 29.0 (±0.1) °C.

Fig. S6. Effects of increasing amounts of complex [Cu(sal-ala)(bpy)(DA)] presence (•) and complex [Cu(sal-ala)(bpy)(H2O)] (■) on the relative viscosities of calf thymus RNA at 29.0 (±0.1) °C.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagaraj, K., Sakthinathan, S. & Arunachalam, S. Synthesis, CMC determination and nucleic acid-binding interaction of a surfactant copper(II) complex containing amino acid–Schiff base ligand:[Cu(sal-ala)(bpy)(DA)]. J IRAN CHEM SOC 12, 267–275 (2015). https://doi.org/10.1007/s13738-014-0481-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-014-0481-z

Keywords

Navigation