Auber D, Archambault D, Bourqui R, Delest M, Dubois J, Lambert A, Mary P, Mathiaut M, Mélançon G, Pinaud B, Renoust B, Vallet J (2018) Tulip 5. In: Alhajj R, Rokne J (eds) Encyclopedia of social network analysis and mining. Springer, New York, pp 1–28
Google Scholar
Bar Y, Levy N, Wolf L (2014) Classification of artistic styles using binarized features derived from a deep neural network. In: Agapito L, Bronstein M, Rother C (eds) European conference on computer vision workshops. Springer, Cham, pp 71–84
Google Scholar
Bilen H, Vedaldi A (2016) Integrated perception with recurrent multi-task neural networks. In: Advances in neural information processing systems, p 235–243
Carlson A, Betteridge J, Kisiel B, Settles B, Hruschka Jr, E.R, Mitchell T.M (2010) Toward an architecture for never-ending language learning. In: AAAI, vol 5. Atlanta, p 3
Carneiro G, da Silva NP, Del Bue A, Costeira JP (2012) Artistic image classification: an analysis on the printart database. In: European conference on computer vision, pp 143–157
Caruana R (1997) Multitask learning. Mach Learn 28(1):41–75
MathSciNet
Article
Google Scholar
Chen X, Shrivastava A, Gupta A (2013) Neil: extracting visual knowledge from web data. In: Proceedings of the IEEE international conference on computer vision, pp 1409–1416
Chu WT, Wu YL (2018) Image style classification based on learnt deep correlation features. IEEE Trans Multimed 20(9):2491–2502
Article
Google Scholar
Collomosse J, Bui T, Wilber M.J, Fang C, Jin H (2017) Sketching with style: Visual search with sketches and aesthetic context. In: Proceedings of the IEEE international conference on computer vision, pp 2679–2687
Crowley E, Zisserman A (2014) The state of the art: object retrieval in paintings using discriminative regions. In: Proceedings of the British machine vision conference. BMVA Press
Crowley EJ, Parkhi OM, Zisserman A (2015) Face painting: querying art with photos. In: BMVC, pp 65–1
Crowley E.J, Zisserman A (2016) The art of detection. In: European conference on computer vision. Springer, pp 721–737
Cui P, Liu S, Zhu W (2018) General knowledge embedded image representation learning. IEEE Trans Multimed 20(1):198–207
Article
Google Scholar
Davies DL, Bouldin DW (1979) A cluster separation measure. IEEE Trans Pattern Anal Mach Intell 2:224–227
Article
Google Scholar
Deng J, Ding N, Jia Y, Frome A, Murphy K, Bengio S, Li, Y, Neven H, Adam H (2014) Large-scale object classification using label relation graphs. In: European conference on computer vision. Springer, pp 48–64
Dwyer T, Marriott K, Stuckey P.J (2005) Fast node overlap removal. In: International symposium on graph drawing. Springer, pp 153–164
Fergus R, Bernal H, Weiss Y, Torralba A (2010) Semantic label sharing for learning with many categories. In: European conference on computer vision. Springer, pp 762–775
Garcia N, Renoust B, Nakashima Y (2019) Context-aware embeddings for automatic art analysis. In: Proceedings of the 2019 on international conference on multimedia retrieval. ACM, pp 25–33
Garcia N, Renoust B, Nakashima Y (2019) Understanding art through multi-modal retrieval in paintings. arXiv preprint arXiv:1904.10615
Garcia N, Vogiatzis G (2018) How to read paintings: semantic art understanding with multi-modal retrieval. In: Proceedings of the European conference in computer vision workshops
Goyal P, Ferrara E (2018) Graph embedding techniques, applications, and performance: a survey. Knowl Based Syst 151:78–94
Article
Google Scholar
Grover A, Leskovec J (2016) node2vec: scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, pp 855–864
Hachul S, Jünger M (2004) Drawing large graphs with a potential-field-based multilevel algorithm. In: International symposium on graph drawing. Springer, pp 285–295
He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition
Johnson CR, Hendriks E, Berezhnoy IJ, Brevdo E, Hughes SM, Daubechies I, Li J, Postma E, Wang JZ (2008) Image processing for artist identification. IEEE Signal Process Mag 25(4):37–48
Article
Google Scholar
Johnson J, Krishna R, Stark M, Li L.J, Shamma D, Bernstein M, Fei-Fei L (2015) Image retrieval using scene graphs. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3668–3678
Karayev S, Trentacoste M, Han H, Agarwala A, Darrell T, Hertzmann A, Winnemoeller H (2014) Recognizing image style. In: Proceedings of the British machine vision conference. BMVA Press
Khan FS, Beigpour S, Van de Weijer J, Felsberg M (2014) Painting-91: a large scale database for computational painting categorization. In: Machine vision and applications
Krishna R, Zhu Y, Groth O, Johnson J, Hata K, Kravitz J, Chen S, Kalantidis Y, Li LJ, Shamma DA, Bernstein M, Fei-Fei L (2016) Visual genome: Connecting language and vision using crowdsourced dense image annotations. arXiv:1602.07332
Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105
Lambert A, Bourqui R, Auber D (2010) Winding roads: routing edges into bundles. Comput Graph Forum 29(3):853–862
Article
Google Scholar
Long M, Wang J (2015) Learning multiple tasks with deep relationship networks, vol 3. CoRR, arXiv:abs/1506.02117
Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110
Article
Google Scholar
Ma D, Gao F, Bai Y, Lou Y, Wang S, Huang T, Duan LY (2017) From part to whole: who is behind the painting? In: Proceedings of the 2017 ACM on multimedia conference. ACM
Mao H, Cheung M, She J (2017) Deepart: learning joint representations of visual arts. In: ACM on multimedia conference
Marino K, Salakhutdinov R, Gupta A (2017) The more you know: Using knowledge graphs for image classification. In: 2017 IEEE conference on computer vision and pattern recognition (CVPR). IEEE, pp 20–28
Mensink T, Van Gemert J (2014) The rijksmuseum challenge: Museum-centered visual recognition. In: Proceedings of international conference on multimedia retrieval. ACM
Miller GA (1995) Wordnet: a lexical database for English. Commun ACM 38(11):39–41
Article
Google Scholar
Renoust B, Oliveira Franca M, Chan J, Garcia N, Le V, Uesaka A, Nakashima Y, Nagahara H, Wang J, Fujioka Y (2019) Historical and modern features for Buddha statue classification. In: Proceedings of 2019 ACM multimedia conference, SUMAC workshop. Association for Computing Machinery (ACM), pp 1–8
Renoust B, Oliveira Franca M, Chan J, Le V, Uesaka A, Nakashima Y, Nagahara H, Wang J, Fujioka Y (2019) Buda.art: a multimodal content-based analysis and retrieval system for Buddha statues. In: Proceedings of 2019 ACM multimedia conference. Association for Computing Machinery (ACM), pp 1–3
Rudd EM, Günther M, Boult TE (2016) Moon: a mixed objective optimization network for the recognition of facial attributes. In: European conference on computer vision. Springer, pp 19–35
Ruder S (2017) An overview of multi-task learning in deep neural networks. arXiv preprint arXiv:1706.05098
Salakhutdinov R, Torralba A, Tenenbaum J (2011) Learning to share visual appearance for multiclass object detection. In: 2011 IEEE conference on computer vision and pattern recognition (CVPR). IEEE, pp 1481–1488
Saleh B, Elgammal AM (2015) Large-scale classification of fine-art paintings: learning the right metric on the right feature. CoRR
Sanakoyeu A, Kotovenko D, Lang S, Ommer B (2018) A style-aware content loss for real-time HD style transfer. In: Proceedings of the European conference on computer vision, vol 2
Schubert E, Sander J, Ester M, Kriegel HP, Xu X (2017) Dbscan revisited, revisited: why and how you should (still) use DBSCAN. ACM Trans Database Syst (TODS) 42(3):19
MathSciNet
Article
Google Scholar
Seguin B, Striolo C, Kaplan F et al (2016) Visual link retrieval in a database of paintings. In: Hua G, Jégou H (eds) European conference on computer vision workshops. Springer, Cham, pp 753–767
Google Scholar
Sener O, Koltun V (2018) Multi-task learning as multi-objective optimization. In: Advances in neural information processing systems, pp 525–536
Shamir L, Macura T, Orlov N, Eckley D.M, Goldberg I.G (2010) Impressionism, expressionism, surrealism: automated recognition of painters and schools of art. ACM Trans Appl Percept 6(2)
Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image recognition. In: International conference on learning representations
Speer R, Havasi C (2012) Representing general relational knowledge in conceptnet 5. In: Proceedings of the eighth international conference on language resources and evaluation (LREC-2012), pp 3679–3686
Strezoski G, van Noord N, Worring M (2019) Learning task relatedness in multi-task learning for images in context. In: Proceedings of the 2019 on international conference on multimedia retrieval. ACM, pp 78–86
Strezoski G, Worring M (2018) Omniart: a large-scale artistic benchmark. ACM Trans Multimed Comput Commun Appl (TOMM) 14(4):88
Google Scholar
Tan WR, Chan CS, Aguirre HE, Tanaka K (2016) Ceci n’est pas une pipe: a deep convolutional network for fine-art paintings classification. In: ICIP
Wang X, Ye Y, Gupta A (2018) Zero-shot recognition via semantic embeddings and knowledge graphs. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 6857–6866
Wattenberg M, Vigas F, Johnson I (2016) How to use t-sne effectively. Distill. https://doi.org/10.23915/distill.00002. http://distill.pub/2016/misread-tsne
Xu K, Ba J, Kiros R, Cho K, Courville A, Salakhudinov R, Zemel R, Bengio Y (2015) Show, attend and tell: neural image caption generation with visual attention. In: International conference on machine learning, pp 2048–2057
Yang Y, Hospedales T (2016) Deep multi-task representation learning: a tensor factorisation approach. arXiv preprint arXiv:1605.06391
Zhang H, Shang X, Luan H, Wang M, Chua TS (2016) Learning from collective intelligence: feature learning using social images and tags. ACM Trans Multimed Comput Commun Appl., pp 1:1–1:23. https://doi.org/10.1145/2978656
Chapter
Google Scholar
Zhang T, Ghanem B, Liu S, Ahuja N (2013) Robust visual tracking via structured multi-task sparse learning. Int J Comput Vis 101(2):367–383
MathSciNet
Article
Google Scholar
Zhang Z, Luo P, Loy CC, Tang X (2014) Facial landmark detection by deep multi-task learning. In: European conference on computer vision. Springer, pp 94–108