The influence of image descriptors’ dimensions’ value cardinalities on large-scale similarity search

Abstract

In this empirical study, we evaluate the impact of the dimensions’ value cardinality (DVC) of image descriptors in each dimension, on the performance of large-scale similarity search. DVCs are inherent characteristics of image descriptors defined for each dimension as the number of distinct values of image descriptors, thus expressing the dimension’s discriminative power. In our experiments, with six publicly available datasets of image descriptors of different dimensionality (64–5,000 dim) and size (240 K–1 M), (a) we show that DVC varies, due to the existence of several extraction methods using different quantization and normalization techniques; (b) we also show that image descriptor extraction strategies tend to follow the same DVC distribution function family; therefore, similarity search strategies can exploit image descriptors DVCs, irrespective of the sizes of the datasets; (c) based on a canonical correlation analysis, we demonstrate that there is a significant impact of image descriptors’ DVCs on the performance of the baseline LSH method [8] and three state-of-the-art hashing methods: SKLSH [28], PCA-ITQ [10], SPH [12], as well as on the performance of MSIDX method [34], which exploits the DVC information; (d) we experimentally demonstrate the influence of DVCs in both the sequential search and in the aforementioned similarity search methods and discuss the advantages of our findings. We hope that our work will motivate researchers for considering DVC analysis as a tool for the design of similarity search strategies in image databases.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Notes

  1. 1.

    http://www.imageclef.org/wikidata.

  2. 2.

    http://corpus-texmex.irisa.fr/.

  3. 3.

    http://vcl.iti.gr/cubrik/datasets/flickr-islands/.

  4. 4.

    In the PCA-ITQ method, due to the PCA’s eigen-decomposition, we also satisfied the condition of #bits\(< d\), where \(d\) is the dimensionality of each evaluation dataset.

  5. 5.

    The first central moment \(\mu _1\) of mean \(\mu \) is discarded in our analysis, because by definition it is always equal to 0 and thus, based on Wilk’s \(\Lambda \) statistic [24] \(\mu _1\) generates a statistical insignificant model of CCA in the examined methods.

  6. 6.

    We calculated the Pearson correlation between mAP and energy (Figs. 78), and found that for all datasets mAP and energy are correlated with over 0.985 with \(p<0.005\).

References

  1. 1.

    Agrawal R, Wu C, Grosky WI, Fotouhi F (2007) Image clustering using visual and text keywords. Computational Intelligence in Robotics and automation, CIRA 2007. International Symposium on, pp. 49,54, 20–23 June 2007

  2. 2.

    Bauer C, Radhakrishnan R, Jiang W (2010) Optimal configuration of hash table based multimedia fingerprint databases using weak bits. In: Proc. of IEEE International Conference on Multimedia and Expo (ICME), pp. 1672–1667

  3. 3.

    Bay H, Ess A, Tuytelaars T, Van Gool L (2008) SURF: speeded up robust features. Comput. Vis. Image Underst. (CVIU) 110(3):346–359

    Article  Google Scholar 

  4. 4.

    Chatzichristofis SA, Boutalis YS (2008) CEDD: Color and edge directivity descriptor: a compact descriptor for image indexing and retrieval. In: ICVS, vol. 5008 of Lecture Notes in Computer Science, Springer, pp 312–322

  5. 5.

    Daintith J, Wright E (2008) Hamming space. In: A dictionary of computing. Oxford University Press. Retrieved 30 Oct 2014, from http://www.oxfordreference.com/view/10.1093/acref/9780199234004.001.0001/acref-9780199234004-e-2303

  6. 6.

    Due Trier Ø, Jain AK, Taxt T (1996) Feature extraction methods for character recognition–a survey. Pattern Recog 29(4):641–662 ISSN 0031–3203

    Article  Google Scholar 

  7. 7.

    Fan B, Wu F, Hu Z (2012) Rotationally invariant descriptors using intensity order pooling. Pattern Anal Mach Intel IEEE Trans 34(10):2031–2045

    Article  Google Scholar 

  8. 8.

    Gionis A, Indyk P, Motwani R (1999) Similarity search in high dimensions via hashing. In: Proceedings of International Conference on Very large data bases (VLDB), pp 518–529

  9. 9.

    Goldberger J, Gordon S, Greenspan H (2006) Unsupervised image-set clustering using an information theoretic framework. Image Process IEEE Trans 15(2):449–458

    Article  Google Scholar 

  10. 10.

    Gong Y, Lazebnik S, Gordo A, Perronnin F (2013) Iterative quantization: a procrustean approach to learning binary codes for large-scale image retrieval. IEEE Trans PAMI 35(12):2916–2929

  11. 11.

    Griffith EJ, Yuan C, Jump M, Ralph JF (2013) Equivalence of BRISK descriptors for the registration of variable bit-depth aerial imagery. In: 2013 IEEE international conference on systems, man, and cybernetics (SMC), pp 2587–2592, 13–16 Oct 2013

  12. 12.

    Heo JP, Lee Y, He J, Chang S, Yoon S (2012) Spherical hashing. In: Proceedings of CVPR, pp 2957–2964

  13. 13.

    He J, Radhakrishnan R, Chang S-F, Bauer C (2011) Compact hashing with joint optimization of search accuracy and time. In: Proceedings of CVPR, pp 753–760

  14. 14.

    Hotelling H (1936) Relations between two sets of variables. Biometrika 28:312–377

    Article  Google Scholar 

  15. 15.

    http://vcl.iti.gr/msidx/

  16. 16.

    http://www.unc.edu/~yunchao/itq.htm

  17. 17.

    Huang Z, Shen HT, Liu J, Zhou X (2011) Effective data co-reduction for multimedia similarity search. In: Proceedings of ACM SIGMOD, pp 1021–1032

  18. 18.

    Huang Z, Shen HT, Shao J, Ruger SM, Zhou X (2008) Locality condensation: a new dimensionality reduction method for image retrieval. In: Proceedings of ACM Multimedia, pp 219–228

  19. 19.

    Jegou H, Douze M, Schmid C (2011) Product quantization for nearest neighbor search. IEEE Trans PAMI 33(1):117–128

    Article  Google Scholar 

  20. 20.

    Joly A, Buisson O (2011) Random maximum margin hashing. In: Proceedings of the CVPR’11 - IEEE computer vision and pattern recognition, Jun 2011. IEEE, Colorado Springs, US, pp 873–880

  21. 21.

    Lai PL, Fyfe C (2000) Kernel and nonlinear canonical correlation analysis. Int J Neural Syst 10(5):365–377

    Article  Google Scholar 

  22. 22.

    Liu C, Yuen J, Torralba A (2009) Nonparametric scene parsing: label transfer via dense scene alignment. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2009. CVPR 2009. IEEE, Miami, US, pp 1972–1979

  23. 23.

    Lowe D (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60:91–110

    Article  Google Scholar 

  24. 24.

    Mardia KV, Kent JT, Bibby JM (1979) Multivariate analysis. Academic Press

  25. 25.

    Massey FJ (1951) The Kolmogorov–Smirnov test for goodness of fit. J Am Stat Assoc 46(253):6878

    Article  Google Scholar 

  26. 26.

    Ng AY, Jordan MI, Weiss Y (2002) On spectral clustering: analysis and an algorithm. In: Proceedings of NIPS

  27. 27.

    Oliva A, Torralba A (2001) Modeling the shape of the scene: a holistic representation of the spatial envelope. Int J Comput Vis 42(3):145–175

    Article  MATH  Google Scholar 

  28. 28.

    Raginsky M, Lazebnik S (2009) Locality-sensitive binary codes from shift-invariant kernels. In: Proceedings of NIPS, pp 1509–1517

  29. 29.

    Russell BC, Torralba A, Liu C, Fergus R, Freeman WT (2007) Object recognition by scene alignment. In: NIPS

  30. 30.

    sglab.kaist.ac.kr\_Hashing/

  31. 31.

    Song J, Yang Y, Huang Z, Shen H-T, Hong R (2011) Multiple feature hashing for real-time large scale near-duplicate video retrieval. In: Proceedings of the 19th ACM international conference on Multimedia (MM ’11). ACM, New York, NY, USA, pp 423–432

  32. 32.

    Stehling RO, Nascimento MA, Falcao AX (2002) A compact and efficient image retrieval approach based on border/interior pixel classification. In: Proceedings of CIKM

  33. 33.

    Szeliski R (2006) Image alignment and stitching: a tutorial. Found Trends Comput Graph Comput Vis 2(1)

  34. 34.

    Tiakas E, Rafailidis D, Dimou A, Daras P (2013) MSIDX: multi-sort indexing for efficient content-based image search and retrieval. IEEE Trans Multimed 15(6):1415–1430

    Article  Google Scholar 

  35. 35.

    Uijlings JRR, van de Sande KEA, Gevers T, Smeulders AWM (2013) Selective search for object recognition. Int J Comput Vis Springer 104(2):154–171

    Article  Google Scholar 

  36. 36.

    Van De Sande KEA, Gevers T, Snoek CGM (2010) Evaluating color descriptors for object and scene recognition. IEEE Trans PAMI 32(9):1582–1596

    Article  Google Scholar 

  37. 37.

    Van Leuken RH, Veltkamp RC (2011) Selecting vantage objects for similarity indexing. ACM TOMCCAP 7(3):16

    Google Scholar 

  38. 38.

    Wang J, Kumar S, Chang S-F (2010) Semisupervised hashing for scalable image retrieval. In: Proceedings of CVPR, pp 3424–3431

  39. 39.

    Weiss Y, Torralba A, Fergus R (2008) Spectral hashing. In: Proceedings of NIPS, pp 1753–1760

  40. 40.

    Yan J, Liu N, Yan S, Yang Q, Fan W, Wei W, Chen Z (2011) Trace-oriented feature analysis for large-scale text data dimension reduction. Knowl Data Eng IEEE Trans 23(7):1103–1117

  41. 41.

    Yang J, Jiang YG, Hauptmann AG, Ngo CW (2007) Evaluating bag-of-visual-words representations in scene classification. In: Proceedings of ACM MIR, pp 197–206

  42. 42.

    Yan D, Huang L, Jordan MI (2009) Fast approximate spectral clustering. In: Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining (KDD ’09). ACM, New York, NY, USA, pp 907–916

  43. 43.

    Yan J, Liu N, Zhang B, Yan S, Chen Z, Cheng Q, Fan W, Ma W-Y (2005) OCFS: optimal orthogonal centroid feature selection for text categorization. In: Proceedings of the 28th annual international ACM SIGIR ’05. ACM, New York, NY, USA, pp 122–129

  44. 44.

    Zhang D, Islam MM, Lu G (2012) A review on automatic image annotation techniques. Pattern Recog, 45(1), pp 346–362, ISSN 0031–3203, http://dx.doi.org/10.1016/j.patcog.2011.05.013

  45. 45.

    Zitov B, Flusser J (2003) Image registration methods: a survey. Image Vis Comput 21(11):977–1000. ISSN 0262-8856

Download references

Acknowledgments

This work was partially supported by the EC FP7 funded project CUBRIK, ICT- 287704 (http://www.cubrikproject.eu).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Theodoros Semertzidis.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Semertzidis, T., Rafailidis, D., Strintzis, M.G. et al. The influence of image descriptors’ dimensions’ value cardinalities on large-scale similarity search. Int J Multimed Info Retr 4, 187–204 (2015). https://doi.org/10.1007/s13735-014-0073-9

Download citation

Keywords

  • Dimensions value cardinalities
  • Indexing
  • Content-based image retrieval
  • Approximate similarity search