The influence of image descriptors’ dimensions’ value cardinalities on large-scale similarity search

  • Theodoros SemertzidisEmail author
  • Dimitrios Rafailidis
  • Michael Gerassimos Strintzis
  • Petros Daras
Regular Paper


In this empirical study, we evaluate the impact of the dimensions’ value cardinality (DVC) of image descriptors in each dimension, on the performance of large-scale similarity search. DVCs are inherent characteristics of image descriptors defined for each dimension as the number of distinct values of image descriptors, thus expressing the dimension’s discriminative power. In our experiments, with six publicly available datasets of image descriptors of different dimensionality (64–5,000 dim) and size (240 K–1 M), (a) we show that DVC varies, due to the existence of several extraction methods using different quantization and normalization techniques; (b) we also show that image descriptor extraction strategies tend to follow the same DVC distribution function family; therefore, similarity search strategies can exploit image descriptors DVCs, irrespective of the sizes of the datasets; (c) based on a canonical correlation analysis, we demonstrate that there is a significant impact of image descriptors’ DVCs on the performance of the baseline LSH method [8] and three state-of-the-art hashing methods: SKLSH [28], PCA-ITQ [10], SPH [12], as well as on the performance of MSIDX method [34], which exploits the DVC information; (d) we experimentally demonstrate the influence of DVCs in both the sequential search and in the aforementioned similarity search methods and discuss the advantages of our findings. We hope that our work will motivate researchers for considering DVC analysis as a tool for the design of similarity search strategies in image databases.


Dimensions value cardinalities Indexing Content-based image retrieval Approximate similarity search 



This work was partially supported by the EC FP7 funded project CUBRIK, ICT- 287704 (


  1. 1.
    Agrawal R, Wu C, Grosky WI, Fotouhi F (2007) Image clustering using visual and text keywords. Computational Intelligence in Robotics and automation, CIRA 2007. International Symposium on, pp. 49,54, 20–23 June 2007Google Scholar
  2. 2.
    Bauer C, Radhakrishnan R, Jiang W (2010) Optimal configuration of hash table based multimedia fingerprint databases using weak bits. In: Proc. of IEEE International Conference on Multimedia and Expo (ICME), pp. 1672–1667Google Scholar
  3. 3.
    Bay H, Ess A, Tuytelaars T, Van Gool L (2008) SURF: speeded up robust features. Comput. Vis. Image Underst. (CVIU) 110(3):346–359CrossRefGoogle Scholar
  4. 4.
    Chatzichristofis SA, Boutalis YS (2008) CEDD: Color and edge directivity descriptor: a compact descriptor for image indexing and retrieval. In: ICVS, vol. 5008 of Lecture Notes in Computer Science, Springer, pp 312–322Google Scholar
  5. 5.
    Daintith J, Wright E (2008) Hamming space. In: A dictionary of computing. Oxford University Press. Retrieved 30 Oct 2014, from
  6. 6.
    Due Trier Ø, Jain AK, Taxt T (1996) Feature extraction methods for character recognition–a survey. Pattern Recog 29(4):641–662 ISSN 0031–3203CrossRefGoogle Scholar
  7. 7.
    Fan B, Wu F, Hu Z (2012) Rotationally invariant descriptors using intensity order pooling. Pattern Anal Mach Intel IEEE Trans 34(10):2031–2045CrossRefGoogle Scholar
  8. 8.
    Gionis A, Indyk P, Motwani R (1999) Similarity search in high dimensions via hashing. In: Proceedings of International Conference on Very large data bases (VLDB), pp 518–529Google Scholar
  9. 9.
    Goldberger J, Gordon S, Greenspan H (2006) Unsupervised image-set clustering using an information theoretic framework. Image Process IEEE Trans 15(2):449–458CrossRefGoogle Scholar
  10. 10.
    Gong Y, Lazebnik S, Gordo A, Perronnin F (2013) Iterative quantization: a procrustean approach to learning binary codes for large-scale image retrieval. IEEE Trans PAMI 35(12):2916–2929Google Scholar
  11. 11.
    Griffith EJ, Yuan C, Jump M, Ralph JF (2013) Equivalence of BRISK descriptors for the registration of variable bit-depth aerial imagery. In: 2013 IEEE international conference on systems, man, and cybernetics (SMC), pp 2587–2592, 13–16 Oct 2013Google Scholar
  12. 12.
    Heo JP, Lee Y, He J, Chang S, Yoon S (2012) Spherical hashing. In: Proceedings of CVPR, pp 2957–2964Google Scholar
  13. 13.
    He J, Radhakrishnan R, Chang S-F, Bauer C (2011) Compact hashing with joint optimization of search accuracy and time. In: Proceedings of CVPR, pp 753–760Google Scholar
  14. 14.
    Hotelling H (1936) Relations between two sets of variables. Biometrika 28:312–377CrossRefGoogle Scholar
  15. 15.
  16. 16.
  17. 17.
    Huang Z, Shen HT, Liu J, Zhou X (2011) Effective data co-reduction for multimedia similarity search. In: Proceedings of ACM SIGMOD, pp 1021–1032Google Scholar
  18. 18.
    Huang Z, Shen HT, Shao J, Ruger SM, Zhou X (2008) Locality condensation: a new dimensionality reduction method for image retrieval. In: Proceedings of ACM Multimedia, pp 219–228Google Scholar
  19. 19.
    Jegou H, Douze M, Schmid C (2011) Product quantization for nearest neighbor search. IEEE Trans PAMI 33(1):117–128CrossRefGoogle Scholar
  20. 20.
    Joly A, Buisson O (2011) Random maximum margin hashing. In: Proceedings of the CVPR’11 - IEEE computer vision and pattern recognition, Jun 2011. IEEE, Colorado Springs, US, pp 873–880Google Scholar
  21. 21.
    Lai PL, Fyfe C (2000) Kernel and nonlinear canonical correlation analysis. Int J Neural Syst 10(5):365–377CrossRefGoogle Scholar
  22. 22.
    Liu C, Yuen J, Torralba A (2009) Nonparametric scene parsing: label transfer via dense scene alignment. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2009. CVPR 2009. IEEE, Miami, US, pp 1972–1979Google Scholar
  23. 23.
    Lowe D (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60:91–110CrossRefGoogle Scholar
  24. 24.
    Mardia KV, Kent JT, Bibby JM (1979) Multivariate analysis. Academic PressGoogle Scholar
  25. 25.
    Massey FJ (1951) The Kolmogorov–Smirnov test for goodness of fit. J Am Stat Assoc 46(253):6878CrossRefGoogle Scholar
  26. 26.
    Ng AY, Jordan MI, Weiss Y (2002) On spectral clustering: analysis and an algorithm. In: Proceedings of NIPSGoogle Scholar
  27. 27.
    Oliva A, Torralba A (2001) Modeling the shape of the scene: a holistic representation of the spatial envelope. Int J Comput Vis 42(3):145–175CrossRefzbMATHGoogle Scholar
  28. 28.
    Raginsky M, Lazebnik S (2009) Locality-sensitive binary codes from shift-invariant kernels. In: Proceedings of NIPS, pp 1509–1517Google Scholar
  29. 29.
    Russell BC, Torralba A, Liu C, Fergus R, Freeman WT (2007) Object recognition by scene alignment. In: NIPSGoogle Scholar
  30. 30.\_Hashing/Google Scholar
  31. 31.
    Song J, Yang Y, Huang Z, Shen H-T, Hong R (2011) Multiple feature hashing for real-time large scale near-duplicate video retrieval. In: Proceedings of the 19th ACM international conference on Multimedia (MM ’11). ACM, New York, NY, USA, pp 423–432Google Scholar
  32. 32.
    Stehling RO, Nascimento MA, Falcao AX (2002) A compact and efficient image retrieval approach based on border/interior pixel classification. In: Proceedings of CIKMGoogle Scholar
  33. 33.
    Szeliski R (2006) Image alignment and stitching: a tutorial. Found Trends Comput Graph Comput Vis 2(1)Google Scholar
  34. 34.
    Tiakas E, Rafailidis D, Dimou A, Daras P (2013) MSIDX: multi-sort indexing for efficient content-based image search and retrieval. IEEE Trans Multimed 15(6):1415–1430CrossRefGoogle Scholar
  35. 35.
    Uijlings JRR, van de Sande KEA, Gevers T, Smeulders AWM (2013) Selective search for object recognition. Int J Comput Vis Springer 104(2):154–171CrossRefGoogle Scholar
  36. 36.
    Van De Sande KEA, Gevers T, Snoek CGM (2010) Evaluating color descriptors for object and scene recognition. IEEE Trans PAMI 32(9):1582–1596CrossRefGoogle Scholar
  37. 37.
    Van Leuken RH, Veltkamp RC (2011) Selecting vantage objects for similarity indexing. ACM TOMCCAP 7(3):16Google Scholar
  38. 38.
    Wang J, Kumar S, Chang S-F (2010) Semisupervised hashing for scalable image retrieval. In: Proceedings of CVPR, pp 3424–3431Google Scholar
  39. 39.
    Weiss Y, Torralba A, Fergus R (2008) Spectral hashing. In: Proceedings of NIPS, pp 1753–1760Google Scholar
  40. 40.
    Yan J, Liu N, Yan S, Yang Q, Fan W, Wei W, Chen Z (2011) Trace-oriented feature analysis for large-scale text data dimension reduction. Knowl Data Eng IEEE Trans 23(7):1103–1117Google Scholar
  41. 41.
    Yang J, Jiang YG, Hauptmann AG, Ngo CW (2007) Evaluating bag-of-visual-words representations in scene classification. In: Proceedings of ACM MIR, pp 197–206Google Scholar
  42. 42.
    Yan D, Huang L, Jordan MI (2009) Fast approximate spectral clustering. In: Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining (KDD ’09). ACM, New York, NY, USA, pp 907–916Google Scholar
  43. 43.
    Yan J, Liu N, Zhang B, Yan S, Chen Z, Cheng Q, Fan W, Ma W-Y (2005) OCFS: optimal orthogonal centroid feature selection for text categorization. In: Proceedings of the 28th annual international ACM SIGIR ’05. ACM, New York, NY, USA, pp 122–129Google Scholar
  44. 44.
    Zhang D, Islam MM, Lu G (2012) A review on automatic image annotation techniques. Pattern Recog, 45(1), pp 346–362, ISSN 0031–3203,
  45. 45.
    Zitov B, Flusser J (2003) Image registration methods: a survey. Image Vis Comput 21(11):977–1000. ISSN 0262-8856Google Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  • Theodoros Semertzidis
    • 1
    • 2
    Email author
  • Dimitrios Rafailidis
    • 2
  • Michael Gerassimos Strintzis
    • 1
    • 2
  • Petros Daras
    • 2
  1. 1.Information Processing Laboratory, Electrical and Computer Engineering DepartmentAristotle University of ThessalonikiThessalonikiGreece
  2. 2.Information Technologies InstituteCentre for Research and Technology HellasThessalonikiGreece

Personalised recommendations