Skip to main content

Advertisement

Log in

Flexible production of three-dimensional biocomposite from cotton micro-dust waste and sand blend through a novel combination of molten salt hydrate and sodium L-glutamate salt

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Cotton micro-dust (CMD) is a low-cost feedstock produced by cotton spinning mills. It consists of cellulose as the chief component, along with other non-cellulosic lignin and extractives. The two-stage pretreatment of CMD using alkali and acid facilitated cellulose enrichment and promoted favorable morphology for producing cellulose-based biomaterials. The process involves the solubilization of cellulose using an inexpensive and environmentally friendly zinc chloride solution for further conversion to biomaterials. The addition of novel cross-linker monosodium glutamate (MSG) at 5% (by weight) concentration facilitated the preparation of the polymer matrix at room temperature. The gelation process that transformed the liquid mixture into a solid polymer matrix depended on the shear-sensitive interaction between the Zn–CMD solution and the MSG. Further, the mix of CMD–ZnCl2 and MSG was converted into a biocomposite by a reinforcement step with pit sand. The Zn–CMD–MSG acted as a binder for sand particles and formed a solid biocomposite. The complex association of sand with CMD conferred high thermal stability to the biocomposite. Moreover, the biocomposite showed good mechanical properties, with a tensile strength of 20 MPa and a flexural strength of 12 MPa. Hence, the present process is promising for developing a cellulose-based green composite from low-cost cotton waste and sand.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Reshmy R, Philip E, Madhavan A, Tarfdar A, Sindhu R, Binod P, Pandey A (2022) Biorefinery aspects for cost-effective production of nanocellulose and high value-added biocomposites. Fuel 311:122575

    Article  CAS  Google Scholar 

  2. Anjumol KS, Sumesh KR, Vackova T, Maria Hana J, Sabu T, Spatenka P (2023) Effect of plasma treatment on the morphology, mechanical, and wetting properties of polyethylene/banana fiber composites. Biomass Convers Biorefin 2023:1–12

    Google Scholar 

  3. Sumesh KR, Kanthavel K (2020) Synergy of fiber content, Al2O3 nanopowder, NaOH treatment and compression pressure on free vibration and damping behavior of natural hybrid-based epoxy composites. Polym Bull 77:1581–1604

    Article  Google Scholar 

  4. Ravikumar P, Rajeshkumar G, Manimegalai P, Sumesh KR, Sanjay MR, Siengchin S (2022) Delamination and surface roughness analysis of jute/polyester composites using response surface methodology: consequence of sodium bicarbonate treatment. J Ind Text 51:360S-377S

    Article  CAS  Google Scholar 

  5. Kavimani V, Gopal PM, Sumesh KR, Elanchezhian R (2022) Improvement on mechanical and flame retardancy behaviour of bio-exfoliated graphene-filled epoxy/glass fibre composites using compression moulding approach. Polym Bull 79:6289–6307

    Article  CAS  Google Scholar 

  6. Van Hai L, Pham DH, Kim J (2022) Effect of bleaching and hot-pressing conditions on mechanical properties of compressed wood. Polymers 14:2901

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hussain A, Podgursky V, Goljandin D, Antonov M, Viljus M, Krasnou I (2023) Sustainable fabrication of polypropylene-postconsumer cotton composite materials: circularity, characterization, mechanical testing, and tribology. Mater Today Sustain 22:100344

    Article  Google Scholar 

  8. Ranjithkumar M, Rajarathinam R, Kumar PS, Rangasamy G, Gurunathan B, Ethiraj B, Thanabal V (2022) Insight into the effective utilization of cotton spinning wastes from textile mills for the production of bioethanol. Sustain Energy Technol Assess 53:102770

    Google Scholar 

  9. Khandaker S, Bashar MM, Islam A, Hossain MT, Teo SH, Awual MR (2022) Sustainable energy generation from textile biowaste and its challenges: a comprehensive review. Renew Sustain Energy Rev 157:112051

    Article  CAS  Google Scholar 

  10. Amicarelli V, Bux C, Spinelli MP, Lagioia G (2022) Life cycle assessment to tackle the take-make-waste paradigm in the textiles production. Waste Manage 151:10–27

    Article  Google Scholar 

  11. Ruiz-Caldas MX, Carlsson J, Sadiktsis I, Jaworski A, Nilsson U, Mathew AP (2022) Cellulose nanocrystals from postconsumer cotton and blended fabrics: a study on their properties, chemical composition, and process efficiency. ACS Sustain Chem Eng 10:3787–3798

    Article  CAS  Google Scholar 

  12. Vignesh N, Chandraraj K (2021) Improved high solids loading enzymatic hydrolysis and fermentation of cotton microdust by surfactant addition and optimization of pretreatment. Process Biochem 106:60–69

    Article  CAS  Google Scholar 

  13. Huang C, Yu H, Abdalkarim SYH, Li Y, Chen X, Yang X, Zhang L (2022) A comprehensive investigation on cellulose nanocrystals with different crystal structures from cotton via an efficient route. Carbohydr Polym 276:118766

    Article  CAS  PubMed  Google Scholar 

  14. Olaiya NG, Oyekanmi AA, Hanafiah MM, Olugbade TO, Adeyeri MK, Olaiya FG (2022) Enzyme-assisted extraction of nanocellulose from textile waste: a review on production technique and applications. Bioresour Technol 2022:101183

    Google Scholar 

  15. Liang D, Liu W, Zhong T, Liu H, Dhandapani R, Li H, Wolcott M (2023) Nanocellulose reinforced lightweight composites produced from cotton waste via integrated nanofibrillation and compounding. Sci Rep 13:2144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cai Z, Haque ANMA, Dhandapani R, Naebe M (2023) Impact of variability of cotton gin trash on the properties of powders prepared from distinct mechanical approaches. Powder Technol 413:118045

    Article  CAS  Google Scholar 

  17. Tu H, Li X, Liu Y, Luo L, Duan B, Zhang R (2022) Recent progress in regenerated cellulose-based fibers from alkali/urea system via spinning process. Carbohydr Polym 2022:119942

    Article  Google Scholar 

  18. Xi Y, Zhang L, Tian Y, Song J, Ma J, Wang Z (2022) Rapid dissolution of cellulose in an AlCl3/ZnCl2 aqueous system at room temperature and its versatile adaptability in functional materials. Green Chem 24:885–897

    Article  CAS  Google Scholar 

  19. Shen Y, Yuan X (2023) Research advancement in molten salt-mediated thermochemical upcycling of biomass waste. Green Chem 25:2087–2108

    Article  CAS  Google Scholar 

  20. Sun L, Han J, Wu J, Huang W, Li Y, Mao Y, Wang Y (2022) Cellulose pretreatment with inorganic salt hydrate: dissolution, regeneration, structure and morphology. Ind Crops Prod 180:114722

    Article  CAS  Google Scholar 

  21. Li B, Liu G, Tang X, Zhang H, Gao X (2023) Facile preparation of all cellulose composite with excellent mechanical and antibacterial properties via partial dissolution of corn-stalk biomass. Int J Biol Macromol 228:89–98

    Article  CAS  PubMed  Google Scholar 

  22. Shu L, Wang Z, Zhang XF, Yao J (2023) Highly conductive and anti-freezing cellulose hydrogel for flexible sensors. Int J Biol Macromol 230:123425

    Article  CAS  PubMed  Google Scholar 

  23. Vignesh N, Suriyaraj SP, Selvakumar R, Chandraraj K (2021) Facile fabrication and characterization of Zn loaded cellulose membrane from cotton microdust waste and its antibacterial properties: a waste to value approach. J Polym Environ 29:1651–1662

    Article  CAS  Google Scholar 

  24. Adeleke DA, Olajide PA, Omowumi OS, Okunlola DD, Taiwo AM, Adetuyi BO (2022) Effect of monosodium glutamate on the body system. World News Nat Sci 44:1–23

    CAS  Google Scholar 

  25. Sithole NT, Tsotetsi NT, Mashifana T, Sillanpää M (2022) Alternative cleaner production of sustainable concrete from waste foundry sand and slag. J Clean Prod 336:130399

    Article  CAS  Google Scholar 

  26. Ahmad J, Majdi A, Deifalla AF, Qureshi HJ, Saleem MU, Qaidi SM, El-Shorbagy MA (2022) Concrete made with dune sand: overview of fresh, mechanical and durability properties. Materials 15:6152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pan X, Gencturk B (2023) Self-healing efficiency of concrete containing engineered aggregates. Cem Concr Compos 2023:105175

    Article  Google Scholar 

  28. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker DLAP (2008) Determination of structural carbohydrates and lignin in biomass. Lab Anal Proc 1617:1–16

    Google Scholar 

  29. Batista MJ, Torres SS, Franca AS, Oliveira LS (2023) Effect of zinc chloride solution assisted by ultrasound on polysaccharides of spent coffee grounds. Carbohydr Polym 5:100298

    CAS  Google Scholar 

  30. Yingkamhaeng N, Nimchua T, Pinmanee P, Suwanprateep J, Rungmekarat S, Sukyai P (2022) Synergistic effect of xylanase and laccase on structural features of energy cane. Ind Crops Prod 176:114410

    Article  CAS  Google Scholar 

  31. Hopson C, Rigual V, Domínguez JC, Alonso MV, Oliet M, Rodríguez F (2022) A new approach for the use of cellulose-rich solids from biorefinery in the formulation of gel-like materials. Ind Crops Prod 186:115230

    Article  CAS  Google Scholar 

  32. Pennells J, Chaléat C, Martin DJ (2023) Benchmarking the production of cellulose nanofibres: biomass feedstock, mechanical processing, and nanopaper performance. J Polym Environ 31:1760–1786

    Article  CAS  Google Scholar 

  33. Wang Y, Chen M, Yang Y, Ralph J, Pan X (2023) Efficient O-demethylation of lignin-derived aromatic compounds under moderate conditions. RSC Adv 13:5925–5932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li Y, Sun LL, Cao DM, Cao XF, Sun SN (2023) One-step conversion of corn stalk to glucose and furfural in molten salt hydrate/organic solvent biphasic system. Bioresour Technol 2023:129520

    Article  Google Scholar 

  35. Chen T, Zhu R, Li Y, Ramaswamy S, Zhang X, Tang Y (2023) A novel solvent combined zinc chloride and organic acid for highly efficient and green disassembly of lignocelluloses toward lignin valorization. J Polym Environ 31:1828–1838

    Article  CAS  Google Scholar 

  36. Lara-Serrano M, Sboiu DM, Morales-delaRosa S, Campos-Martin JM (2023) Selective fragmentation of lignocellulosic biomass with ZnCl2·4H2O using a dissolution/precipitation method. Appl Sci 13:2953

    Article  CAS  Google Scholar 

  37. Burger D, Winter A, Subbiahdoss G, Oberlerchner JT, Beaumont M, Tamada Y, Rosenau T (2020) Partial amorphization of cellulose through zinc chloride treatment: a facile and sustainable pathway to functional cellulose nanofibers with flame-retardant and catalytic properties. ACS Sustain Chem Eng 8:13576–13582

    Article  CAS  Google Scholar 

  38. Zhang S, Zhou J, Gao X, Zhang H (2022) Preparation of eco-friendly cryogel absorbent/paper mulch composite with cellulose/ZnCl2 gel as adhesive. Ind Crops Prod 177:114477

    Article  CAS  Google Scholar 

  39. Ji B, Tang P, Hu C, Yan K (2019) Catalytic and ionic cross-linking actions of l-glutamate salt for the modification of cellulose by 1,2,3,4-butanetetracarboxylic acid. Carbohydr Polym 207:288–296

    Article  CAS  PubMed  Google Scholar 

  40. Jamett I, Carrasco P, Olmos M, Hernández P (2022) Glycine/glutamate: “green” alternatives to recover metals from minerals/residues: review of current research. Minerals 13:22

    Article  Google Scholar 

  41. Wang YL, Zhou YN, Li XY, Huang J, Wahid F, Zhong C, Chu LQ (2020) Continuous production of antibacterial carboxymethyl chitosan-zinc supramolecular hydrogel fiber using a double-syringe injection device. Int J Biol Macromol 156:252–261

    Article  CAS  PubMed  Google Scholar 

  42. Tselana BM, Muniyasamy S, Ojijo VO, Mhike W (2023) Melt processible biodegradable blends of polyethylene glycol plasticized cellulose diacetate with polylactic acid and polybutylene adipate-co-terephthalate. J Polym Environ 2023:1–18

    Google Scholar 

  43. Starkova O, Platnieks O, Sabalina A, Gaidukovs S (2022) Hydrothermal ageing effect on reinforcement efficiency of nanofibrillated cellulose/biobased poly (butylene succinate) composites. Polymers 14:221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Li L, Qian X, Shen J (2022) Flame-retardant, antibacterial, liquid-barrier, and wet-strength paper enabled by cellulosic fiber-derived additives. Carbohydr Polym 293:119728

    Article  CAS  PubMed  Google Scholar 

  45. Shamshina JL, Acharya S, Rumi SS, Liyanage S, Parajuli P, Abidi N (2022) Cryogenic grinding of cotton fiber cellulose: the effect on physicochemical properties. Carbohydr Polym 289:119408

    Article  CAS  PubMed  Google Scholar 

  46. He Z, Liu Y, Kim HJ, Tewolde H, Zhang H (2022) Fourier transform infrared spectral features of plant biomass components during cotton organ development and their biological implications. J Cotton Res 5:1–13

    Article  Google Scholar 

  47. Hanif MU, Zwawi M, Algarni M, Bahadar A, Iqbal H, Capareda SC, Jamil A (2022) The effects of using pretreated cotton gin trash on the production of biogas from anaerobic co-digestion with cow manure and sludge. Energies 15:490

    Article  CAS  Google Scholar 

  48. Wu W, He H, Dong Q, Wang Y, An F, Song H (2022) Structural and rheological properties of nanocellulose with different polymorphs, nanocelluloses I and II, prepared by natural deep eutectic solvents from sugarcane bagasse. Int J Biol Macromol 220:892–900

    Article  CAS  PubMed  Google Scholar 

  49. Abdelraof M, Hasanin MS, Farag MM, Ahmed HY (2019) Green synthesis of bacterial cellulose/bioactive glass nanocomposites: effect of glass nanoparticles on cellulose yield, biocompatibility and antimicrobial activity. Int J Biol Macromol 138:975–985

    Article  CAS  PubMed  Google Scholar 

  50. Apaydın Varol E, Mutlu Ü (2023) TGA-FTIR analysis of biomass samples based on the thermal decomposition behavior of hemicellulose, cellulose, and lignin. Energies 16:3674

    Article  Google Scholar 

  51. Shi Y, Jiang J, Ye H, Sheng Y, Zhou Y, Foong SY, Ge S (2023) Transforming municipal cotton waste into a multilayer fibre biocomposite with high strength. Environ Res 218:114967

    Article  CAS  PubMed  Google Scholar 

  52. Martínez MG, Couce AA, Dupont C, da Silva PD, Thiéry S, Meyer XM, Gourdon C (2022) Torrefaction of cellulose, hemicelluloses and lignin extracted from woody and agricultural biomass in TGA-GC/MS: linking production profiles of volatile species to biomass type and macromolecular composition. Ind Crops Prod 176:114350

    Article  Google Scholar 

  53. Gupta S, Gupta GK, Mondal MK (2022) Thermal degradation characteristics, kinetics, thermodynamic, and reaction mechanism analysis of pistachio shell pyrolysis for its bioenergy potential. Biomass Convers Biorefin 12:4847–4861

    Article  CAS  Google Scholar 

  54. Guzman-Puyol S, Tedeschi G, Goldoni L, Benítez JJ, Ceseracciu L, Koschella A, Heredia-Guerrero JA (2022) Greaseproof, hydrophobic, and biodegradable food packaging bioplastics from C6-fluorinated cellulose esters. Food Hydrocoll 128:107562

    Article  CAS  Google Scholar 

  55. Fan X, Zhang L, Dong F, Liu H, Xu X (2023) Room-temperature self-healing polyurethane–cellulose nanocrystal composites with strong strength and toughness based on dynamic bonds. Carbohydr Polym 308:120654

    Article  CAS  PubMed  Google Scholar 

  56. Vahidi G, Bajwa DS, Shojaeiarani J, Stark NM (2022) Experimental investigation into the direct feeding of coupling agent, cellulose nanocrystals, and nano zinc oxide in high-density polyethylene. Composites Part C 8:100287

    CAS  Google Scholar 

  57. Shi J, Zhong T, Xu X, Wu J, Zou Y, Fei B, Chen H (2023) Eco-friendly and special-shaped bamboo binderless fiberboards fabricated by self-bonding technology: effect of bamboo fibers with different sizes. Ind Crops Prod 194:116300

    Article  CAS  Google Scholar 

  58. Govender S, Mohan TP, Kanny K (2023) Effect of nanoclay-cellulose adhesive bonding and hybrid glass and flax fiber face sheets on flax fiber honeycomb panels. Polym Compos 44:4879–4890

    Article  CAS  Google Scholar 

  59. Zarna C, Chinga-Carrasco G, Echtermeyer AT (2023) Biocomposite panels with unidirectional core stiffeners 3-point bending properties and considerations on 3D printing and extrusion as a manufacturing method. Compos Struct 313:116930

    Article  Google Scholar 

  60. Xu Q, Chen C, Rosswurm K, Yao T, Janaswamy S (2016) A facile route to prepare cellulose-based films. Carbohydr Polym 149:274–281

    Article  CAS  PubMed  Google Scholar 

  61. Yang X, Li N, Lin X, Pan X, Zhou Y (2016) Selective cleavage of the aryl ether bonds in lignin for depolymerization by acidic lithium bromide molten salt hydrate under mild conditions. J Agric Food Chem 64:8379–8387

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors greatly acknowledge IIT Madras for awarding half time teaching assistantship to Vignesh Natarajan.

Author information

Authors and Affiliations

Authors

Contributions

VN—Conceptualization; Experimental design; Investigation; Methodology; Data curation; Writing original draft; DNA—Assistance in the characterization works, Writing—review & editing; CK—Formal analysis; Investigation; Supervision; Writing—review & editing.

Corresponding authors

Correspondence to Dali Naidu Arnepalli or Chandraraj Krishnan.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Natarajan, V., Arnepalli, D.N. & Krishnan, C. Flexible production of three-dimensional biocomposite from cotton micro-dust waste and sand blend through a novel combination of molten salt hydrate and sodium L-glutamate salt. Iran Polym J (2024). https://doi.org/10.1007/s13726-024-01322-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13726-024-01322-9

Keywords

Navigation