Skip to main content
Log in

Enhanced interfacial properties of carbon fibers reinforced epoxy or PP composites using modified graphene oxide with two different polymer brushes

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Carbon fibers (CFs) can usually only be used to reinforce polar (or non-polar) resins, and if they are to be used for reinforcing with another polymer type, they need to be surface-modified, which will inevitably damage the surface of the carbon fibers and thus reduces the overall performance of the composite. In this work, graphene oxide was first prepared and modified, and then two polymer brushes, polystyrene (PS) and hydroxypropyl polyacrylate (PHPA) were grafted onto its surface in a one-step process. This approach reduced the damage caused to the CFs surface by multiple treatments and improved the interfacial adhesion between CFs and different resin matrices. An electrophoretic deposition method was used to deposit the modified GO on the surface of CFs, which can form strong interaction between CFs and a variety of resins. The results showed that different molecular chains have been grafted on the surface of GO, and then the latter was uniformly deposited on the surface of CFs, improving their surface toughness. Additionally, when the suspension concentration was only 1 mg/mL, the interfacial shear strength (IFSS) of CF/epoxy and CF/PP increased by 52.0% and 26.5%, respectively. This means that a small amount of GO can significantly improve the interfacial properties of carbon fiber reinforced composites (CFRCs). Therefore, they can be applied to aerospace, wind energy and other industries to effectively improve the interfacial bonding between fiber and resin, after surface modification.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Scheme 2
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Supplementary data and material related with this manuscript will be available from the corresponding auther(xdzhouecust@126.com) under request.

References

  1. Miaocai G, Xiaosu Y (2013) The production of tough, electrically conductive carbon fiber composite laminates for use in airframes. Carbon 58:241–244

    Article  Google Scholar 

  2. Zhu H, Fu K, Chen Y, Liu H, Yang B, Li Y (2023) Water uptake on lightning strike damage of carbon fiber reinforced composites with surface protections. Compos Part B Eng 263:110869

    Article  CAS  Google Scholar 

  3. Karaçor B, Özcanlı M, Kumlu U (2023) Hybrid jute/carbon fiber composites: optimum post-curing time. Iran Polym J 32:1443–1454

    Article  Google Scholar 

  4. Jin F-L, Li X, Park S-J (2015) Synthesis and application of epoxy resins: a review. J Ind Eng Chem 29:1–11

    Article  CAS  Google Scholar 

  5. Kumar S, Samal SK, Mohanty S, Nayak SK (2018) Recent development of bio-based epoxy resins: a review. Polym Plast Technol Eng 57:133–155

    Article  CAS  Google Scholar 

  6. Chen H, Ginzburg VV, Yang J, Yang Y, Liu W, Huang Y, Du L, Chen B (2016) Thermal conductivity of polymer-based composites: fundamentals and applications. Prog Polym Sci 59:41–85

    Article  CAS  Google Scholar 

  7. Tiong SC (2006) Structural and mechanical properties of polymer nanocomposites. Mater Sci Eng R-Rep 53:73–197

    Article  Google Scholar 

  8. Sun Z, Fridrich B, de Santi A, Elangovan S, Barta K (2018) Bright side of lignin depolymerization: toward new platform chemicals. Chem Rev 118:614–678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gibson RF (2010) A review of recent research on mechanics of multifunctional composite materials and structures. Compos Struct 92:2793–2810

    Article  Google Scholar 

  10. Wang S, Muiruri JK, Soo XYD, Liu S, Thitsartarn W, Tan BH, Suwardi A, Li Z, Zhu Q, Loh XJ (2023) Bio-polypropylene and polypropylene-based biocomposites: solutions for a sustainable future. Chem Asian J 18:e202200972

    Article  CAS  PubMed  Google Scholar 

  11. Farotti E, Natalini M (2018). In: Amodio D, Bonora N, Arcidiacono G, Bruno L, Frendo F, Mirone G, Iacoviello F (eds) Procedia structural integrity. Elsevier BV, Amsterdam

    Google Scholar 

  12. Anuar Sharuddin SD, Abnisa F, Wan Daud WMA, Aroua MK (2016) A review on pyrolysis of plastic wastes. Energy Conv Manag 115:308–326

    Article  CAS  Google Scholar 

  13. Rahimi A, Garcia JM (2017) Chemical recycling of waste plastics for new materials production. Nat Rev Chem 1:0046

    Article  Google Scholar 

  14. Wang Z, Burra KG, Lei T, Gupta AK (2021) Co-pyrolysis of waste plastic and solid biomass for synergistic production of biofuels and chemicals-a review. Prog Energy Combust Sci 84:100899

    Article  Google Scholar 

  15. Peng Y, Wang Y, Ke L, Dai L, Wu Q, Cobb K, Zeng Y, Zou R, Liu Y, Ruan R (2022) A review on catalytic pyrolysis of plastic wastes to high-value products. Energy Conv Manag 254:115243

    Article  CAS  Google Scholar 

  16. Alshammari BA, Alsuhybani MS, Almushaikeh AM, Alotaibi BM, Alenad AM, Alqahtani NB, Alharbi AG (2021) Comprehensive review of the properties and modifications of carbon fiber-reinforced thermoplastic composites. Polymers 13:2474–2505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Huang H, Luo J, Peng C, Sun T, Deng T, Hu J, Guzal Anvarovna K, Azizbek Davlatali Ugli N, Hou D, Wei J, Yu Q (2023) Interfacial bond between modified micro carbon fiber and high-strength cement paste in UHPC: bond-slip tests and molecular dynamic simulation. Cem Concr Compos 142:105168

    Article  CAS  Google Scholar 

  18. Chen Z, Tu Q, Shen X, Fang Z, Bi S, Yin Q, Zhang X (2023) Enhancing the thermal and mechanical properties of carbon fiber/natural rubber composites by co-modification of dopamine and silane coupling agents. Polym Test 126:108164

    Article  CAS  Google Scholar 

  19. Zheng H, Zhang W, Li B, Zhu J, Chaohang W, Song G, Wu G, Yang X, Huang Y, Ma L (2022) Recent advances of interphases in carbon fiber-reinforced polymer composites: a review. Compos Part B Eng 233:109639

    Article  CAS  Google Scholar 

  20. Jin Z, Han Z, Chang C, Sun S, Fu H (2022) Review of methods for enhancing interlaminar mechanical properties of fiber-reinforced thermoplastic composites: interfacial modification, nano-filling and forming technology. Compos Sci Technol 228:109660

    Article  CAS  Google Scholar 

  21. Sharma M, Gao S, Mäder E, Sharma H, Wei LY, Bijwe J (2014) Carbon fiber surfaces and composite interphases. Compos Sci Technol 102:35–50

    Article  CAS  Google Scholar 

  22. Qian H, Bismarck A, Greenhalgh ES, Kalinka G, Shaffer MSP (2008) Hierarchical composites reinforced with carbon nanotube grafted fibers: the potential assessed at the single fiber level. Chem Mat 20:1862–1869

    Article  CAS  Google Scholar 

  23. Ma L, Zhu Y, Feng P, Song G, Huang Y, Liu H, Zhang J, Fan J, Hou H, Guo Z (2019) Reinforcing carbon fiber epoxy composites with triazine derivatives functionalized graphene oxide modified sizing agent. Compos Part B Eng 176:107078

    Article  CAS  Google Scholar 

  24. Chen J, Wang K, Zhao Y (2018) Enhanced interfacial interactions of carbon fiber reinforced PEEK composites by regulating PEI and graphene oxide complex sizing at the interface. Compos Sci Technol 154:175–186

    Article  CAS  Google Scholar 

  25. Wang C, Zhao M, Li J, Yu J, Sun S, Ge S, Guo X, Xie F, Jiang B, Wujcik EK, Huang Y, Wang N, Guo Z (2017) Silver nanoparticles/graphene oxide decorated carbon fiber synergistic reinforcement in epoxy-based composites. Polymer 131:263–271

    Article  CAS  Google Scholar 

  26. Zhao M, Meng L, Ma L, Ma L, Yang X, Huang Y, Ryu JE, Shankar A, Li T, Yan C, Guo Z (2018) Layer-by-layer grafting CNTs onto carbon fibers surface for enhancing the interfacial properties of epoxy resin composites. Compos Sci Technol 154:28–36

    Article  Google Scholar 

  27. Piñeiro-García A, Semetey V (2023) The “how” and “where” behind the functionalization of graphene oxide by thiol-ene “click” chemistry. Chem Eur J 29:e202301604

    Article  PubMed  Google Scholar 

  28. Bao C, Yuan H, Huang F, Shi J, Hao R, Zhang Y, Chen X, Lu J (2023) Self-assembled sandwich-like SA–GO/PAN membranes with high-performance for pervaporative desalination of salt solutions. Iran Polym J 32:1291–1306

    Article  CAS  Google Scholar 

  29. Deng Y, Li Y, Dai J, Lang M, Huang X (2011) An efficient way to functionalize graphene sheets with presynthesized polymer via ATNRC chemistry. J Polym Sci Pol Chem 49:1582–1590

    Article  CAS  Google Scholar 

  30. Wang L, Ping X, Sun K, Chen Q, Pan K (2017) Advances in the modification of graphene oxide by atom transfer radical polymerization. Polym Mater Sci Eng 33:184–190

    Google Scholar 

  31. Li Y, Peng Q, He X, Hu P, Wang C, Shang Y, Wang R, Jiao W, Lv H (2012) Synthesis and characterization of a new hierarchical reinforcement by chemically grafting graphene oxide onto carbon fibers. J Mater Chem 22:18748–18752

    Article  CAS  Google Scholar 

  32. Feng C, Huang X (2018) Polymer brushes: efficient synthesis and applications. Acc Chem Res 51:2314–2323

    Article  CAS  PubMed  Google Scholar 

  33. Deng Y, Zhang J, Li Y, Hu J, Yang D, Huang X (2012) Thermoresponsive graphene oxide-PNIPAM nanocomposites with controllable grafting polymer chains via moderate in situ SET-LRP. J Polym Sci Pol Chem 50:4451–4458

    Article  CAS  Google Scholar 

  34. Chen J, Yao B, Li C, Shi G (2013) An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon 64:225–229

    Article  CAS  Google Scholar 

  35. Poh HL, Šanék F, Ambroai A, Zhao G, Spfer Z, Pumera M (2012) Graphenes prepared by Staudenmaier, Hofmann and Hummers methods with consequent thermal exfoliation exhibit very different electrochemical properties. Nanoscale 4:3515–3522

    Article  CAS  PubMed  Google Scholar 

  36. Yan C-N, Xu L, Wang L-P, Bai L-P, Li G (2019) Preparation and properties of block copolymer brushes grafted from silicon substrate via ARGET ATRP. Polym Mater Sci Eng 35:126–131

    CAS  Google Scholar 

  37. Saito E, Caetano VE, Antunes EF, Lobo AO, Marciano FR, Trava-Airoldi VJ, Corat EJ (2014) Vertically aligned carbon nanotubes/carbon fiber composites for electrochemical applications. Mater Sci Forum 802:192–196

    Article  Google Scholar 

  38. Kim D-K, An K-H, Bang Y-H, Kwac L-K, Oh S-Y, Kim B-J (2016) Effects of electrochemical oxidation of carbon fibers on interfacial shear strength using a micro-bond method. Carbon Lett 19:32–39

    Article  Google Scholar 

  39. Hou J, Zhou X, Zhou X (2011) Grafting of poly (n-butylacrylate)-b-poly(2-hydroxyethyl methacrylate) on carbon fiber and its effect on composite properties. Polym Plast Technol Eng 50:260–265

    Article  CAS  Google Scholar 

  40. Lu Z, Li M, Liang M, Chen Y, Zou H, Ren X (2021) Improving interfacial strength of epoxy composites by constructing “palm-tree”-like structure on carbon fiber. Polym Compos 42:4617–4629

    Article  CAS  Google Scholar 

  41. Wang C, Li J, Yu J, Sun S, Li X, Xie F, Jiang B, Wu G, Yu F, Huang Y (2017) Grafting of size-controlled graphene oxide sheets onto carbon fiber for reinforcement of carbon fiber/epoxy composite interfacial strength. Compos Part A Appl Sci Manuf 101:511–520

    Article  CAS  Google Scholar 

  42. Yao X, Gao X, Jiang J, Xu C, Deng C, Wang J (2018) Comparison of carbon nanotubes and graphene oxide coated carbon fiber for improving the interfacial properties of carbon fiber/epoxy composites. Compos Part B Eng 132:170–177

    Article  CAS  Google Scholar 

  43. Li L, Yan C, Xu H, Liu D, Shi P, Zhu Y, Chen G, Wu X, Liu W (2019) Improving the interfacial properties of carbon fiber–epoxy resin composites with a graphene-modified sizing agent. J Appl Polym Sci 136:47122

    Article  Google Scholar 

  44. Zhu Y, Ma Y, Yan C, Xu H, Liu D, Chen G, Shi P, Hu J, Gao C (2021) Improved interfacial shear strength of CF/PA6 and CF/epoxy composites by grafting graphene oxide onto carbon fiber surface with hyperbranched polyglycerol. Surf Interface Anal 53:831–843

    Article  CAS  Google Scholar 

  45. Zhang Y, Shi L, Guo X, Liu L (2020) Effects of different interfaces on mechanical properties of graphene oxide-carbon fibre/epoxy resin composites. J Shanghai Uni Nat Sci Ed 26:927–936

    Google Scholar 

  46. Li N, Li X, Liu L, Wang L, Xu S, Yang J, Huang Y, Wang C (2020) Surface modification of carbon fiber(CF) deposited graphene oxide(GO) by electrophorestic deposition and interfacial properties of GO-CF/epoxy composites. Acta Materiae Compositae Sinica 37:1571–1580

    Google Scholar 

  47. Luo W, Zhang B, Zou H, Liang M, Chen Y (2017) Enhanced interfacial adhesion between polypropylene and carbon fiber by graphene oxide/polyethyleneimine coating. J Ind Eng Chem 51:129–139

    Article  CAS  Google Scholar 

  48. Zhang K, Li Y, He X, Nie M, Wang Q (2018) Mechanical interlock effect between polypropylene/carbon fiber composite generated by interfacial branched fibers. Compos Sci Technol 167:1–6

    Article  Google Scholar 

  49. Gogol R, Sethi SK, Manik G (2021) Surface functionalization and CNT coating induced improved interfacial interactions of carbon fiber with polypropylene matrix: a molecular dynamics study. Appl Surf Sci 539:148162

    Article  Google Scholar 

  50. Yan X, Zhao G, Yang J, Wang X (2023) Improving the interfacial shear strength of polypropylene/carbon fiber nonwoven composite by three different methods. J Reinf Plast Compos 42:1207–1219

    Article  CAS  Google Scholar 

  51. Liu Y, Zhang X, Song C, Zhang Y, Fang Y, Yang B, Wang X (2015) An effective surface modification of carbon fiber for improving the interfacial adhesion of polypropylene composites. Mater Des 88:810–819

    Article  CAS  Google Scholar 

  52. Czub P (2009) Synthesis of high-molecular-weight epoxy resins from modified natural oils and bisphenol A or bisphenol A-based epoxy resins. Polym Adv Technol 20:194–208

    Article  CAS  Google Scholar 

  53. Auvergne R, Caillol S, David G, Boutevin B, Pascault J-P (2014) Biobased thermosetting epoxy: present and future. Chem Rev 114:1082–1115

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaodong Zhou.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, H., Zhang, Q., Ma, H. et al. Enhanced interfacial properties of carbon fibers reinforced epoxy or PP composites using modified graphene oxide with two different polymer brushes. Iran Polym J (2024). https://doi.org/10.1007/s13726-024-01309-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13726-024-01309-6

Keywords

Navigation