Skip to main content
Log in

Self-assembled sandwich-like SA–GO/PAN membranes with high-performance for pervaporative desalination of salt solutions

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

In this work, we proposed a self-assembly method to fabricate a novel pervaporative membrane for desalination. The graphene oxide (GO) layer was deposited on polyacrylonitrile (PAN) ultrafiltration membrane support by vacuum assistance, and then a thin cross-linked sodium alginate (SA) layer was coated on the GO/PAN membrane surface to form a sandwich-like SA–GO/PAN composite membrane. The morphology and physicochemical structure of the composite membrane were characterized using attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR), scanning electronic microscopy (SEM), and atomic force microscopy (AFM) techniques and contact angle measurement. The thin SA layer would stabilize and protect the structure of GO layer of SA–GO/PAN membrane, thus GO layer was not easy to fall off or crack during pervaporation desalination. The effects of SA coating concentration, feed temperature, salt concentration, and multicomponent salt solutions on the desalination performance of the prepared membrane were investigated. SA–GO/PAN membrane showed a good desalination performance for high salt concentration solutions and multicomponent salt solutions. When the feed temperature raised from 30 to 80 °C, the flux of the SA–GO/PAN composite membrane increased from 5.61 to 18.35 kg m−2 h−1, while the rejection still remained above 99.8%. The experimental results showed that SA–GO/PAN composite membrane performed well in pervaporative desalination of salt solution with excellent long-term stability.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. Elimelech M, Phillip WA (2011) The future of seawater desalination: energy, technology, and the environment. Science 333:712–717

    Article  CAS  PubMed  Google Scholar 

  2. Feinberg BJ, Ramon GZ, Hoek EMV (2013) Thermodynamic analysis of osmotic energy recovery at a reverse osmosis desalination plant. Environ Sci Technol 47:2982–2989

    Article  CAS  PubMed  Google Scholar 

  3. Kasemset S, Lee A, Miller DJ, Freeman BD, Sharma MM (2013) Effect of polydopamine deposition conditions on fouling resistance, physical properties, and permeation properties of reverse osmosis membranes in oil/water separation. J Membr Sci 425–426:208–216

    Article  Google Scholar 

  4. Greenlee LF, Lawler DF, Freeman BD, Marrot B, Moulin P (2009) Reverse osmosis desalination: water sources, technology, and today’s challenges. Water Res 43:2317–2348

    Article  CAS  PubMed  Google Scholar 

  5. Wang H, Ding S, Zhu H, Wang F, Guo Y, Zhang H, Chen J (2014) Effect of stretching ratio and heating temperature on structure and performance of PTFE hollow fiber membrane in VMD for RO brine. Sep Purif Technol 126:82–94

    Article  CAS  Google Scholar 

  6. Bhadra M, Roy S, Mitra S (2016) Desalination across a graphene oxide membrane via direct contact membrane distillation. Desalination 378:37–43

    Article  CAS  Google Scholar 

  7. Deshmukh A, Elimelech M (2017) Understanding the impact of membrane properties and transport phenomena on the energetic performance of membrane distillation desalination. J Membr Sci 539:458–474

    Article  CAS  Google Scholar 

  8. Liang B, Li Q, Cao B, Li P (2018) Water permeance, permeability and desalination properties of the sulfonic acid functionalized composite pervaporation membranes. Desalination 433:132–140

    Article  CAS  Google Scholar 

  9. Nigiz FU (2018) Preparation of high-performance graphene nanoplate incorporated polyether block amide membrane and application for seawater desalination. Desalination 433:164–171

    Article  CAS  Google Scholar 

  10. Wang Q, Li N, Bolto B, Hoang M, Xie Z (2016) Desalination by pervaporation: a review. Desalination 387:46–60

    Article  CAS  Google Scholar 

  11. Zhang H-Y, Wen J-L, Shao Q, Yuan A, Ren H-T, Luo F-Y, Zhang X-L (2019) Fabrication of La/Y-codoped microporous organosilica membranes for high-performance pervaporation desalination. J Membr Sci 584:353–363

    Article  CAS  Google Scholar 

  12. Drobek M, Yacou C, Motuzas J, Julbe A, Ding L, Diniz da Costa JC (2012) Long term pervaporation desalination of tubular MFI zeolite membranes. J Membr Sci 415–416:816–823

    Article  Google Scholar 

  13. Jiang LY, Wang Y, Chung T-S, Qiao X-Y, Lai J-Y (2009) Polyimides membranes for pervaporation and biofuels separation. Prog Polym Sci 34:1135–1160

    Article  CAS  Google Scholar 

  14. Chen X, Zhu Y-B, Yu H, Liu JZ, Easton CD, Wang Z, Hu Y, Xie Z, Wu H-A, Zhang X, Li D, Wang H (2021) Ultrafast water evaporation through graphene membranes with subnanometer pores for desalination. J Membr Sci 621:118934

    Article  CAS  Google Scholar 

  15. Prihatiningtyas I, Volodin A, Van der Bruggen B (2019) 110th Anniversary: cellulose nanocrystals as organic nanofillers for cellulose triacetate membranes used for desalination by pervaporation. Ind Eng Chem Res 58:14340–14349

    Article  CAS  Google Scholar 

  16. Zhao P, Meng J, Zhang R, Cao B, Li P (2021) Molecular design of chlorine-resistant polymer for pervaporation desalination. Sep Purif Technol 268:118671

    Article  CAS  Google Scholar 

  17. Guan K, Liu Q, Ji Y, Zhang M, Wu Y, Zhao J, Liu G, Jin W (2018) Precisely controlling nanochannels of graphene oxide membranes through lignin-based cation decoration for dehydration of biofuels. Chemsuschem 11:2315–2320

    Article  CAS  PubMed  Google Scholar 

  18. Hung W-S, Lin T-J, Chiao Y-H, Sengupta A, Hsiao Y-C, Wickramasinghe SR, Hu C-C, Lee K-R, Lai J-Y (2018) Graphene-induced tuning of the d-spacing of graphene oxide composite nanofiltration membranes for frictionless capillary action-induced enhancement of water permeability. J Mater Chem A 6:19445–19454

    Article  CAS  Google Scholar 

  19. Jia FC, Xiao X, Nashalian A, Shen S, Yang L, Han ZY, Qu HJ, Wang TM, Ye Z, Zhu ZJ, Huang LJ, Wang YX, Tang JG, Chen J (2022) Advances in graphene oxide membranes for water treatment. Nano Res 15:6636–6654

    Article  CAS  Google Scholar 

  20. Zhang ZJ, Xiao X, Zhou YH, Huang LJ, Wang YX, Rong QL, Han ZY, Qu HJ, Zhu ZJ, Xu SM, Tang JG, Chen J (2021) Bioinspired graphene oxide membranes with pH-responsive nanochannels for high-performance nanofiltration. ACS Nano 15:13178–13187

    Article  CAS  PubMed  Google Scholar 

  21. Han ZY, Xiao X, Qu HJ, Hu ML, Au C, Nashalian A, Xiao X, Wang YX, Yang L, Jia FC, Wang TM, Ye Z, Servati P, Huang LJ, Zhu ZJ, Tang JG, Chen J (2022) Ultrafast and selective nanofiltration enabled by graphene oxide membranes with unzipped carbon nanotube networks. ACS Appl Mater Interfaces 14:1850–1860

    Article  CAS  PubMed  Google Scholar 

  22. Chen JH, Zhang LJ, Li HT, Lu MH, Xie JH, Guan SQ, Wang X, Liu XJ, Lu J (2022) Preparation and adsorbability of magnetic composites based on cellulose nanofiber/graphene oxide. Colloid Surf A 639:128373

    Article  CAS  Google Scholar 

  23. Liu Y, Zheng S, Gu P, Ng AJ, Wang M, Wei Y, Urban JJ, Mi B (2020) Graphene-polyelectrolyte multilayer membranes with tunable structure and internal charge. Carbon 160:219–227

    Article  CAS  Google Scholar 

  24. Xi Y-H, Liu Z, Liao Q-C, Xie R, Ju X-J, Wang W, Faraj Y, Chu L-Y (2018) Effect of oxidized-group-supported lamellar distance on stability of graphene-based membranes in aqueous solutions. Ind Eng Chem Res 57:9439–9447

    Article  CAS  Google Scholar 

  25. Joshi RK, Carbone P, Wang FC, Kravets VG, Su Y, Grigorieva IV, Wu HA, Geim AK, Nair RR (2014) Precise and ultrafast molecular sieving through graphene oxide membranes. Science 343:752–754

    Article  CAS  PubMed  Google Scholar 

  26. Yeh C-N, Raidongia K, Shao J, Yang Q-H, Huang J (2015) On the origin of the stability of graphene oxide membranes in water. Nat Chem 7:166–170

    Article  CAS  Google Scholar 

  27. Zhang MC, Mao YY, Liu GZ, Liu GP, Fan YQ, Jin WQ (2020) Molecular bridges stabilize graphene oxide membranes in water. Angew Chem Int Edit 59:1689–1695

    Article  CAS  Google Scholar 

  28. Wang ZH, Sun JW, Li N, Qin YZ, Qian XW, Xie ZL (2022) Tuning interlayer structure to construct steady dual-crosslinked graphene oxide membranes for desalination of hypersaline brine via pervaporation. Sep Purif Technol 286:120459

    Article  CAS  Google Scholar 

  29. Cheng M-M, Huang L-J, Wang Y-X, Zhao Y-C, Tang J-G, Wang Y, Zhang Y, Hedayati M, Kipper MJ, Wickramasinghe SR (2019) Synthesis of graphene oxide/polyacrylamide composite membranes for organic dyes/water separation in water purification. J Mater Sci 54:252–264

    Article  CAS  Google Scholar 

  30. Han J-L, Haider MR, Liu M-J, Wang H-C, Jiang W-L, Ding Y-C, Hou Y-N, Cheng H-Y, Xia X, Wang A-J (2019) Borate inorganic cross-linked durable graphene oxide membrane preparation and membrane fouling control. Environ Sci Technol 53:1501–1508

    Article  CAS  PubMed  Google Scholar 

  31. Hung W-S, Tsou C-H, De Guzman M, An Q-F, Liu Y-L, Zhang Y-M, Hu C-C, Lee K-R, Lai J-Y (2014) Cross-linking with diamine monomers to prepare composite graphene oxide-framework membranes with varying d-spacing. Chem Mater 26:2983–2990

    Article  CAS  Google Scholar 

  32. Zhang N, Qi W, Huang L, Jiang E, Li Z, Luo Y, Zhang X, Bao J, Zheng W, He G (2020) A composite membrane of cross-linked GO network semi-interpenetrating in polysulfone substrate for dye removal from water. J Membr Sci 613:118456

    Article  CAS  Google Scholar 

  33. Jang J, Park I, Chee S-S, Song J-H, Kang Y, Lee C, Lee W, Ham M-H, Kim IS (2020) Graphene oxide nanocomposite membrane cooperatively cross-linked by monomer and polymer overcoming the trade-off between flux and rejection in forward osmosis. J Membr Sci 598:117684

    Article  CAS  Google Scholar 

  34. Xu D, Liang H, Zhu X, Yang L, Luo X, Guo Y, Liu Y, Bai L, Li G, Tang X (2020) Metal-polyphenol dual crosslinked graphene oxide membrane for desalination of textile wastewater. Desalination 487:114503

    Article  CAS  Google Scholar 

  35. Wang D, Li S, Li F, Li J, Li N, Wang Z (2021) Thin film nanocomposite membrane with triple-layer structure for enhanced water flux and antibacterial capacity. Sci Total Environ 770:145370

    Article  CAS  PubMed  Google Scholar 

  36. Chen L, Shi G, Shen J, Peng B, Zhang B, Wang Y, Bian F, Wang J, Li D, Qian Z, Xu G, Liu G, Zeng J, Zhang L, Yang Y, Zhou G, Wu M, Jin W, Li J, Fang H (2017) Ion sieving in graphene oxide membranes via cationic control of interlayer spacing. Nature 550:380–383

    Article  CAS  PubMed  Google Scholar 

  37. Liang K, Spiesz EM, Schmieden DT, Xu A-W, Meyer AS, Aubin-Tam ME (2020) Bioproduced polymers self-assemble with graphene oxide into nanocomposite films with enhanced mechanical performance. ACS Nano 14:14731–14739

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Nigiz UF (2020) Graphene oxide-sodium alginate membrane for seawater desalination through pervaporation. Desalination 485:114465

    Article  Google Scholar 

  39. Bao C, Guo Y, Yuan B, Hu Y, Song L (2012) Functionalized graphene oxide for fire safety applications of polymers: a combination of condensed phase flame retardant strategies. J Mater Chem 22:23057–23063

    Article  CAS  Google Scholar 

  40. Travlou NA, Kyzas GZ, Lazaridis NK, Deliyanni EA (2013) Functionalization of graphite oxide with magnetic chitosan for the preparation of a nanocomposite dye adsorbent. Langmuir 29:1657–1668

    Article  CAS  PubMed  Google Scholar 

  41. Feng Y, Feng N, Du G (2013) A green reduction of graphene oxide via starch-based materials. RSC Adv 3:21466–21474

    Article  CAS  Google Scholar 

  42. Wang L, Wang Y, Dai J, Tian S, Xie A, Dai X, Pan J (2021) Coordination-driven interfacial cross-linked graphene oxide-alginate nacre mesh with underwater superoleophobicity for oil-water separation. Carbohyd Polym 251:117097

    Article  CAS  Google Scholar 

  43. Zheng H, Yang J, Han S (2016) The synthesis and characteristics of sodium alginate/graphene oxide composite films crosslinked with multivalent cations. J Appl Polym Sci 133:43616

    Article  Google Scholar 

  44. Bai C, Wang L, Zhu Z (2020) Adsorption of Cr(III) and Pb(II) by graphene oxide/alginate hydrogel membrane: characterization, adsorption kinetics, isotherm and thermodynamics studies. Int J Biol Macromol 147:898–910

    Article  CAS  PubMed  Google Scholar 

  45. Prihatiningtyas I, Gebreslase GA, der Bruggen BV (2020) Incorporation of Al2O3 into cellulose triacetate membranes to enhance the performance of pervaporation for desalination of hypersaline solutions. Desalination 474:114198

    Article  CAS  Google Scholar 

  46. Dobrak-Van Berlo A, Vankelecom IFJ, Van der Bruggen B (2011) Parameters determining transport mechanisms through unfilled and silicalite filled PDMS-based membranes and dense PI membranes in solvent resistant nanofiltration: comparison with pervaporation. J Membr Sci 374:138–149

    Article  CAS  Google Scholar 

  47. Xie Z, Ng D, Hoang M, Duong T, Gray S (2011) Separation of aqueous salt solution by pervaporation through hybrid organic-inorganic membrane: effect of operating conditions. Desalination 273:220–225

    Article  CAS  Google Scholar 

  48. Wu D, Martin J, Du J, Zhang Y, Lawless D, Feng X (2015) Thin film composite membranes comprising of polyamide and polydopamine for dehydration of ethylene glycol by pervaporation. J Membr Sci 493:622–635

    Article  CAS  Google Scholar 

  49. Sun JW, Qian XW, Wang ZH, Zeng FX, Bai HC, Li N (2020) Tailoring the microstructure of poly(vinyl alcohol)-intercalated graphene oxide membranes for enhanced desalination performance of high-salinity water by pervaporation. J Membr Sci 599:17838

    Article  Google Scholar 

  50. Wu D, Gao A, Zhao H, Feng X (2018) Pervaporative desalination of high-salinity water. Chem Eng Res Des 136:154–164

    Article  CAS  Google Scholar 

  51. Huang A, Feng B (2018) Synthesis of novel graphene oxide-polyimide hollow fiber membranes for seawater desalination. J Membr Sci 548:59–65

    Article  CAS  Google Scholar 

  52. Volkov AG, Paula S, Deamer DW (1997) Two mechanisms of permeation of small neutral molecules and hydrated ions across phospholipid bilayers. Bioelectrochem Bioenergetics 42:153–160

    Article  CAS  Google Scholar 

  53. Cha-Umpong W, Hosseini E, Razmjou A, Zakertabrizi M, Korayem AH, Chen V (2020) New molecular understanding of hydrated ion trapping mechanism during thermally-driven desalination by pervaporation using GO membrane. J Membr Sci 598:117687

    Article  CAS  Google Scholar 

  54. Wan LL, Zhou C, Xu K, Feng B, Huang AS (2017) Synthesis of highly stable UiO-66-NH2 membranes with high ions rejection for seawater desalination. Microporous Mesoporous Mater 252:207–213

    Article  CAS  Google Scholar 

  55. Du CL, Du JRH, Feng XS, Du FX, Cheng F, Ali MEA (2022) Pervaporation-assisted desalination of seawater reverse osmosis brine. Sep Purif Technol 290:120820

    Article  CAS  Google Scholar 

  56. Liang B, Zhan W, Qi GG, Lin SS, Nan Q, Liu YX, Cao B, Pan K (2015) High performance graphene oxide/polyacrylonitrile composite pervaporation membranes for desalination applications. J Mater Chem A 3:5140–5147

    Article  CAS  Google Scholar 

  57. Ding MM, Xu H, Chen W, Yang G, Kong Q, Ng D, Lin T, Xie ZL (2020) 2D laminar maleic acid-crosslinked MXene membrane with tunable nanochannels for efficient and stable pervaporation desalination. J Membr Sci 600:117871

    Article  Google Scholar 

  58. Zhou C, Zhou JJ, Huang AS (2016) Seeding-free synthesis of zeolite FAU membrane for seawater desalination by pervaporation. Microporous Mesoporous Mater 234:377–383

    Article  CAS  Google Scholar 

  59. Sun JW, Jia W, Guo JX, Khanzada NK, Jin PR, Wong PW, Zhang XN, An AK (2022) Amino-embedded carbon quantum dots incorporated thin-film nanocomposite membrane for desalination by pervaporation. Desalination 533:115742

    Article  CAS  Google Scholar 

  60. Zhan X, Gao ZY, Ge R, Lu J, Li JD, Wan X (2022) Rigid POSS intercalated graphene oxide membranes with hydrophilic/hydrophobic heterostructure for efficient pervaporation desalination. Desalination 543:116106

    Article  CAS  Google Scholar 

  61. Liang B, Pan K, Li L, Giannelis EP, Cao B (2014) High performance hydrophilic pervaporation composite membranes for water desalination. Desalination 347:199–206

    Article  CAS  Google Scholar 

  62. da Silva DARO, Zuge LCB, de Paula SA (2020) Preparation and characterization of a novel green silica/PVA membrane for water desalination by pervaporation. Sep Purif Technol 247:116852

    Article  Google Scholar 

  63. Selim A, Toth AJ, Fozer D, Haaz E, Mizsey P (2020) Pervaporative desalination of concentrated brine solution employing crosslinked PVA/silicate nanoclay membranes. Chem Eng Res Des 155:229–238

    Article  CAS  Google Scholar 

  64. Xie ZL, Hoang M, Duong T, Ng D, Dao B, Gray S (2011) Sol–gel derived poly(vinyl alcohol)/maleic acid/silica hybrid membrane for desalination by pervaporation. J Membr Sci 383:96–103

    Article  CAS  Google Scholar 

  65. Yilman B, Nigiz FU, Aytaç A, Hilmioglu ND (2019) Multi-walled carbon nanotube doped PVA membrane for desalination. Water Supply 19:1229–1237

    Article  CAS  Google Scholar 

  66. Cheng C, Shen LD, Yu XF, Yang Y, Li X, Wang XF (2017) Robust construction of a graphene oxide barrier layer on a nanofibrous substrate assisted by the flexible poly(vinylalcohol) for efficient pervaporation desalination. J Mater Chem A 5:3558–3568

    Article  CAS  Google Scholar 

  67. Qian XW, Li N, Wang QZ, Ji SC (2018) Chitosan/graphene oxide mixed matrix membrane with enhanced water permeability for high-salinity water desalination by pervaporation. Desalination 438:83–96

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support on this work from National Natural Science Foundation of China (Nos. 21206146, 21176102, 21176215 & 22078191) is highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haikuan Yuan or Jie Lu.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, C., Yuan, H., Huang, F. et al. Self-assembled sandwich-like SA–GO/PAN membranes with high-performance for pervaporative desalination of salt solutions. Iran Polym J 32, 1291–1306 (2023). https://doi.org/10.1007/s13726-023-01202-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-023-01202-8

Keywords

Navigation