Skip to main content
Log in

Synthesis of cinacalcet containing acrylamide hydrogels by photopolymerization and studying their sensing properties

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Novel cinacalcet containing acrylamide hydrogel (CIN-gel) was fabricated by free radical photopolymerization of acrylamide/N,N’-methylenebisacrylamide with cinacalcet hydrochloride as a photoinitiator. This hydrogel prepared by a one-pot photo-induced polymerization system was characterized with respect to its morphological and fluorescence features by means of SEM, UV–vis, and fluorescence spectroscopy. The CIN-gel displayed dual fluorescence emission when excited at 250 nm in water:acetonitrile (1:1, w/w) solution system owing to twisted intramolecular charge transfer between naphthalene and dimethylamino units in the cinacalcet moiety. The prepared fluorophore containing CIN-gel was employed as a fluorescent probe towards certain specific heavy metal ions (HMIs) such as Pb2+, Sn2+, Zn2+ and nitroaromatic compounds (NACs) such as 2-nitrotoluene, 2,4-dinitrophenol, 1,2-dinitrobenzene, 2,4,6-trinitrotoluene, 2,4,6-trinitrophenol, 4-nitrophenol, and 2,4-dinitrophenol. The use of cinacalcet hydrochloride as a photoinitiator and analyte for measuring HMIs and NACs during the production of the hydrogel is being reported for the first time. Fluorescence intensity of CIN-gel was gradually reduced upon the addition of NACs and HMIs. For all compounds, the highest quenching efficiencies were attained in the presence of Zn2+ (35.93%), 2,4,6-trinitrotoluene (95.67%), and 2,4-dinitrophenol (94.96%). Because of its simplicity and sensitivity, the proposed CIN-gel can be considered as potential chemical probe to detect the HMIs ions and NACs compounds.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data that support the findings of this study are presented in the paper.

References

  1. De Vries W, Schütze G, Lofts S, Meili M, Römkens P, Farret R, De Temmerman L, Jakubowski M (2002) Proceedings of the Expert Meeting on Critical Limits for Heavy Metals and Methods for Their Application, Berlin, Germany, pp 29–78

  2. Desvergne JP, Czarnik AW (eds) (2012) Chemosensors of ion and molecule recognition. In: Nato Sci Ser C, Springer Science & Business Media, p 492

  3. Theyagarajan K, Thenmozhi K, Senthilkumar S (2021) Metal oxides in nanocomposite-based electrochemical sensors for toxic chemicals, 1st edn. Elsevier

    Google Scholar 

  4. Shamim MA, Zia H, Zeeshan M, Khan MY, Shahid M (2022) Metal organic frameworks (MOFs) as a cutting-edge tool for the selective detection and rapid removal of heavy metal ions from water: Recent progress. J Environ Chem Eng 10:106991

    Article  CAS  Google Scholar 

  5. Harris HH, Pickering IJ, George GN (2003) The chemical form of mercury in fish. Science 301:1203

    Article  CAS  PubMed  Google Scholar 

  6. Järup L (2003) Hazards of heavy metal contamination. Br Med Bull 68:167–182

    Article  PubMed  Google Scholar 

  7. Cheng J, Li Z, Lin W (2021) Development of a one-step synthesized red emission fluorescent probe for sensitive detection of viscosity in vitro and in vivo. Spectrochim Acta Part A 258:119808

    Article  CAS  Google Scholar 

  8. Buenger D, Topuz F, Groll J (2012) Hydrogels in sensing applications. Prog Polym Sci 37:1678–1719

    Article  CAS  Google Scholar 

  9. Tavakoli J, Tang Y (2017) Hydrogel based sensors for biomedical applications: an updated review. Polymers 9:364

    Article  PubMed  PubMed Central  Google Scholar 

  10. Pinelli F, Magagnin L, Rossi F (2020) Progress in hydrogels for sensing applications: A review. Mater Today Chem 17:100317

    Article  CAS  Google Scholar 

  11. Soto-Quintero A, Meneses-Acosta A, Romo-Uribe A (2015) Tailoring the viscoelastic, swelling kinetics and antibacterial behavior of poly(ethylene glycol)-based hydrogels with polycaprolactone. Eur Polym J 70:1–17

    Article  CAS  Google Scholar 

  12. Güler MA, Gök MK, Figen AK, Özgümüş S (2015) Swelling, mechanical and mucoadhesion properties of Mt/starch-g-PMAA nanocomposite hydrogels. Appl Clay Sci 112:44–52

    Article  Google Scholar 

  13. Baek K, Clay NE, Qin EC, Sullivan KM, Kim DH, Kong H (2015) In situ assembly of the collagen–polyacrylamide interpenetrating network hydrogel: Enabling decoupled control of stiffness and degree of swelling. Eur Polym J 72:413–422

    Article  CAS  Google Scholar 

  14. Chen Q, Zhu L, Zhao C, Wang Q, Zheng J (2013) A robust, one-pot synthesis of highly mechanical and recoverable double network hydrogels using thermoreversible sol-gel polysaccharide. Adv Mater 25:4171–4176

    Article  CAS  PubMed  Google Scholar 

  15. Uygun M, Doganci E, Tasdelen M, Gurek A (2019) One-pot photoinduced synthesis of dansyl containing acrylamide hydrogels and their chemosensing properties. J Appl Polym Sci 136:47096

    Article  Google Scholar 

  16. Yilmaz G, Kahveci MU, Yagci Y (2011) A one pot, one step method for the preparation of clickable hydrogels by photoinitiated polymerization. Macromol Rapid Commun 32:1906–1909

    Article  CAS  PubMed  Google Scholar 

  17. Nguyen KT, West JL (2002) Photopolymerizable hydrogels for tissue engineering applications. Biomaterials 23:4307–4314

    Article  CAS  PubMed  Google Scholar 

  18. Wang H, Zhang B, Zhang J, He X, Liu F, Cui J, Lu Z, Hu G, Yang J, Zhou Z (2021) General one-pot method for preparing highly water-soluble and biocompatible photoinitiators for digital light processing-based 3D printing of hydrogels. ACS Appl Mater Interf 13:55507–55516

    Article  CAS  Google Scholar 

  19. Pamplona R, González-Lana S, Romero P, Ochoa I, Martín-Rapún R, Sánchez-Somolinos C (2023) Tuning of mechanical properties in photopolymerizable gelatin-based hydrogels for in vitro cell culture systems. ACS Appl Polym Mater 5:1487–1498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Biswal D, Hilt JZ (2006) Microscale analysis of patterning reactions via FTIR imaging: application to intelligent hydrogel systems. Polymer 47:7355–7360

    Article  CAS  Google Scholar 

  21. Xue J, Zhang Z, Nie J, Du B (2017) Formation of microgels by utilizing the reactivity of catechols with radicals. Macromolecules 50:5285–5292

    Article  CAS  Google Scholar 

  22. Li K, Liu Y, Ge Y, Cao H, Zhuang S, Yang X, Zhao Y, Gu X (2023) An ultrasound-induced MXene doped PAM–SA super-tough hydrogel. J Mater Chem C 11:1908–1918

    Article  CAS  Google Scholar 

  23. Nelson BR, Kirkpatrick BE, Miksch CE, Davidson MD, Skillin NP, Hach GK, Khang A, Hummel SN, Fairbanks BD, Burdick JA, Bowman CN, Anseth KS (2023) Photoinduced dithiolane crosslinking for multiresponsive dynamic hydrogels. Adv Mater, p 2211209. https://doi.org/10.1002/adma.202211209

  24. Han J, Burgess K (2009) Fluorescent indicators for intracellular pH. Chem Rev 110:2709–2728

    Article  Google Scholar 

  25. Xiong S, Duan L, Cheng X (2020) A novel coumarin-chitosan fluorescent hydrogel for the selective identification of Fe2+ in aqueous systems. Polym Chem 11:6066–6072

    Article  CAS  Google Scholar 

  26. Gorur M, Doganci E, Yilmaz F, Isci U (2015) Synthesis, characterization, and Pb2+ ion sensing application of hexa-armed dansyl end-capped poly(ε-caprolactone) star polymer with phosphazene core. J Appl Polym Sci 132:42380

    Article  Google Scholar 

  27. Huy BT, Thangadurai DT, Sharipov M, Nghia NN, Van Cuong N, Lee Y-I (2022) Recent advances in turn off-on fluorescence sensing strategies for sensitive biochemical analysis—a mechanistic approach. Microchem J 179:107511

    Article  Google Scholar 

  28. He X, Jia H, Sun N, Hou M, Tan Z, Lu X (2022) Fluorescent hydrogels based on oxidized carboxymethyl cellulose with excellent adsorption and sensing abilities for Ag+. Int J Biol Macromol 213:955–966

    Article  CAS  PubMed  Google Scholar 

  29. Grabchev I, Bosch P, Staneva D (2011) A new detector for metal cations based on the combined effect of photoinduced electron transfer and a light harvesting system. J Photochem Photobiol A 222:288–292

    Article  CAS  Google Scholar 

  30. Qu Z, Zhang D, Wang C, Tian S, Deng Y, Qin D, Duan H (2022) Fluorescein derivative immobilized optical hydrogels: fabrication and its application for detection of H2O2. Polymers 14:3005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Xiao W, Dong Q (2022) The recent advances in bulk and microfluidic-based pH sensing and its applications. Catalysts 12:1124

    Article  CAS  Google Scholar 

  32. Dong M, Wang Y-W, Peng Y (2010) Highly selective ratiometric fluorescent sensing for Hg2+ and Au3+, respectively, in aqueous media. Org Lett 12:5310–5313

    Article  CAS  PubMed  Google Scholar 

  33. Kim H, Kang J, Kim KB, Song EJ, Kim C (2014) A highly selective quinoline-based fluorescent sensor for Zn (II). Spectrochim Acta Part A 118:883–887

    Article  CAS  Google Scholar 

  34. Dong H-Q, Wei T-B, Ma X-Q, Yang Q-Y, Zhang Y-F, Sun Y-J, Shi B-B, Yao H, Zhang Y-M, Lin Q (2020) 1,8-Naphthalimide-based fluorescent chemosensors: recent advances and perspectives. J Mater Chem C 8:13501–13529

    Article  CAS  Google Scholar 

  35. Ozay H, Ozay O (2013) Rhodamine based reusable and colorimetric naked-eye hydrogel sensors for Fe3+ ion. Chem Eng J 232:364–371

    Article  CAS  Google Scholar 

  36. Qu Z, Meng X, Duan H, Qin D, Wang L (2020) Rhodamine-immobilized optical hydrogels with shape deformation and Hg2+-sensitive fluorescence behaviors. Sci Rep 10:1–10

    Article  Google Scholar 

  37. Thiel OR, Bernard C, Tormos W, Brewin A, Hirotani S, Murakami K, Saito K, Larsen RD, Martinelli MJ, Reider PJ (2008) Practical synthesis of the calcimimetic agent, cinacalcet. Tetrahedron Lett 49:13–15

    Article  CAS  Google Scholar 

  38. Franceschini N, Joy MS, Kshirsagar A (2003) Cinacalcet HCl: a calcimimetic agent for the management of primary and secondary hyperparathyroidism. Expert Opin Invest Drugs 12:1413–1421

    Article  CAS  Google Scholar 

  39. Xiong Y, Liu S, Zheng J, Chen J, Wen Z, Deng X, Bai B, Li D, Yu Z, Han S, Liu X, Li P (2023) Cinacalcet exhibits rapid bactericidal and efficient anti-biofilm activities against multidrug-resistant Gram-positive pathogens. iScience 26:106378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mostafa GA, Al-Badr AA (2017) Profiles of drug substances, excipients and related methodology. Elsevier

    Google Scholar 

  41. Sorbera L, Castaner R, Bayes M (2002) Cinacalcet hydrochloride. Drug Future 27:831–836

    Article  CAS  Google Scholar 

  42. Verheyen N, Pilz S, Eller K, Kienreich K, Fahrleitner-Pammer A, Pieske B, Ritz E, Tomaschitz A (2013) Cinacalcet hydrochloride for the treatment of hyperparathyroidism. Expert Opin Pharmacother 14:793–806

    Article  CAS  PubMed  Google Scholar 

  43. Harrington PE, Fotsch C (2007) Calcium sensing receptor activators: calcimimetics. Curr Med Chem 14:3027–3034

    Article  CAS  PubMed  Google Scholar 

  44. Nuin E, Andreu I, Torres MJ, Jiménez MC, Miranda MA (2011) Enhanced photosafety of cinacalcet upon complexation with serum albumin. J Phys Chem B 115:1158–1164

    Article  CAS  PubMed  Google Scholar 

  45. Oliverio F, Nuin E, Andreu I, Ragno G, Miranda MA (2014) Assessment of drug entrapment within liposomes using photophysical probes. Eur J Pharm Biopharm 88:551–555

    Article  CAS  PubMed  Google Scholar 

  46. Pina F, Lima J, Lodeiro C, Seixas de Melo J, Díaz P, Albelda MT, García-España E (2002) Long range electron transfer quenching in polyamine chains bearing a terminal naphthalene unit. J Phys Chem A 106:8207–8212

    Article  CAS  Google Scholar 

  47. Nuin E, Jiménez MC, Gn S, Andreu I, Miranda MA (2013) Drug–drug interactions within protein cavities probed by triplet–triplet energy transfer. J Phys Chem Lett 4:1603–1607

    Article  CAS  PubMed  Google Scholar 

  48. Krishnan M, Karunanidhi SL, Sola G, Akshitha Y (2013) Stability indicating HPLC method for the estimation of cinacalcet hydrochloride API. Indian J Res Pharm Biotechnol 1:346

    CAS  Google Scholar 

  49. Kaşgöz H, Özgümüş S, Orbay M (2003) Modified polyacrylamide hydrogels and their application in removal of heavy metal ions. Polymer 44:1785–1793

    Article  Google Scholar 

  50. Güngör N, Karaoğlan S (2001) Interactions of polyacrylamide polymer with bentonite in aqueous systems. Mater Lett 48:168–175

    Article  Google Scholar 

  51. Dumitrescu A, Lisa G, Iordan A, Tudorache F, Petrila I, Borhan A, Palamaru M, Mihailescu C, Leontie L, Munteanu C (2015) Ni ferrite highly organized as humidity sensors. Mater Chem Phys 156:170–179

    Article  CAS  Google Scholar 

  52. Ma N, Li X, Ding Z, Tao J, Xu G, Wang Y, Huang Y, Liu J (2023) A polyacrylic acid/polyacrylamide-based hydrogel electrolyte containing gelatin for efficient electrochromic device with outstanding cycling stability and flexible compatibility. Eur Polym J 190:112024

    Article  CAS  Google Scholar 

  53. Cai Z, Zhang J-T, Xue F, Hong Z, Punihaole D, Asher SA (2014) 2D photonic crystal protein hydrogel coulometer for sensing serum albumin ligand binding. Anal Chem 86:4840–4847

    Article  CAS  PubMed  Google Scholar 

  54. Chen M, Zhou L, Guan Y, Zhang Y (2013) Polymerized microgel colloidal crystals: photonic hydrogels with tunable band gaps and fast response rates. Angew Chem Int Ed 52:9961–9965

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support for this study obtained from the Scientific Research Projects Unit of Kocaeli University of Grant KOU-2018-50HD is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Erdinc Doganci or Mehmet Atilla Tasdelen.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doganci, E., Uygun, M. & Tasdelen, M.A. Synthesis of cinacalcet containing acrylamide hydrogels by photopolymerization and studying their sensing properties. Iran Polym J 32, 1359–1366 (2023). https://doi.org/10.1007/s13726-023-01200-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-023-01200-w

Keywords

Navigation