Skip to main content
Log in

Cylindrical polyester/calcium peroxide oxygen-releasing microparticles: molecular dynamics simulation and experimental analyses

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Peroxide salts are the in-situ oxygen generating components and can resolve the oxygen deficiency of the tissue engineering constructs. The type and properties of the polymeric carriers affect the release rate of the oxygen and peroxide reaction byproducts. In the present study, the composites including calcium peroxide (CPO) and different polyesters, i.e., PGA, PLA, and PCL were modeled with molecular dynamics (MD) simulation. The results of the simulation corroborated that diffusion coefficient of the molecules in PLA/CPO were intermediate between those of PGA/CPO and PCL/CPO composites. Therefore, PLA/CPO composite was fabricated with the combination of electrospinning and aminolysis methods for the experimental phase. The elemental analysis corroborated the uniform distribution of the CPO in microparticles and TGA results implied that composite microparticles were achieved with loading content and encapsulation efficiency of 2.92 and 73%, respectively. The evaluation of aminolysis time and PLA concentration implied that the aminolysis for 150 min produced microparticles with uniform shape. Moreover, the increase of PLA concentration from 6.5 to 13% (w/w) increased the average diameter and length of microparticles by 55 and 136%, respectively. The oxygen release measurement proved that microparticles with 13% PLA had the slowest release rate oxygen and the lowest burst release of it.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Erdem A, Haghniaz R, Ertas YN, Sangabathuni SK, Nasr AS, Swieszkowski W, Ashammakhi N (2022) Methods for fabricating oxygen releasing biomaterials. J Drug Target 30:188–199

    Article  CAS  Google Scholar 

  2. Farris AL, Lambrechts D, Zhou Y, Zhang NZ, Sarkar N, Moorer MC, Rindone AN, Nyberg EL, Perdomo-Pantoja A, Burris SJ, Free K, Witham TF, Riddle RC, Grayson WL (2022) 3D-printed oxygen-releasing scaffolds improve bone regeneration in mice. Biomaterials 280:121318. https://doi.org/10.1016/j.biomaterials.2021.121318

    Article  CAS  Google Scholar 

  3. Lim JO, Huh JS, Abdi SIH, Ng SM, Yoo JJ (2015) Functionalized biomaterials - oxygen releasing scaffolds. J Biotechnol Biomater 5:843–848. https://doi.org/10.4172/2155-952X.1000182

    Article  Google Scholar 

  4. Farris AL, Rindone AN, Grayson WL (2016) Oxygen delivering biomaterials for tissue engineering. J Mater Chem B 4:3422–3432. https://doi.org/10.1039/C5TB02635K

    Article  CAS  Google Scholar 

  5. Camci-Unal G, Alemdar N, Annabi N, Khademhosseini A (2013) Oxygen-releasing biomaterials for tissue engineering. Polym Int 62:843–848. https://doi.org/10.1002/pi.4502

    Article  CAS  Google Scholar 

  6. Seyyed Nasrollah SA, Karimi-Soflou R, Karkhaneh A (2021) PEG-coated magnesium peroxide nanosheets with tunable microstructure: effect of microstructure on concurrent oxygen and magnesium ion release. Mater Lett 291:129550. https://doi.org/10.1016/j.matlet.2021.129550

    Article  CAS  Google Scholar 

  7. Akhavan-Kharazian N, Izadi-Vasafi H (2019) Preparation and characterization of chitosan/gelatin/nanocrystalline cellulose/calcium peroxide films for potential wound dressing applications. Int J Biol Macromol 133:881–891. https://doi.org/10.1016/j.ijbiomac.2019.04.159

    Article  CAS  Google Scholar 

  8. Khorshidi S, Karkhaneh A, Bonakdar S (2020) Oxygen-releasing nanofibers for breathable bone tissue engineering application. J Biomater Appl 35:72–82. https://doi.org/10.1177/0885328220913051

    Article  CAS  Google Scholar 

  9. Khorshidi S, Karkhaneh A, Bonakdar S (2020) Fabrication of amine-decorated nonspherical microparticles with calcium peroxide cargo for controlled release of oxygen. J Biomed Mater Res A 108:136–147. https://doi.org/10.1002/jbm.a.36799

    Article  CAS  Google Scholar 

  10. Khorshidi S, Karkhaneh A (2021) A hydrogel/particle composite with gradient in oxygen releasing microparticle for oxygenation of the cartilage-to-bone interface: modeling and experimental viewpoints. Mater Sci Eng C 118:111522. https://doi.org/10.1016/j.msec.2020.111522

    Article  CAS  Google Scholar 

  11. Montazeri L, Hojjati-Emami S, Bonakdar S, Tahamtani Y, Hajizadeh-Saffar E, Noori-Keshtkar M, Najar-Asl M, Ashtiani MK, Baharvand H (2016) Improvement of islet engrafts by enhanced angiogenesis and microparticle-mediated oxygenation. Biomaterials 89:157–165. https://doi.org/10.1016/j.biomaterials.2016.02.043

    Article  CAS  Google Scholar 

  12. Steg H, Buizer AT, Woudstra W, Veldhuizen AG, Bulstra SK, Grijpma DW, Kuijer R (2017) Oxygen-releasing poly(trimethylene carbonate) microspheres for tissue engineering applications. Polym Adv Technol 28:1252–1257. https://doi.org/10.1002/pat.3919

    Article  CAS  Google Scholar 

  13. Forget A, Staehly C, Ninan N, Harding FJ, Vasilev K, Voelcker NH, Blencowe A (2017) Oxygen-releasing coatings for improved tissue preservation. ACS Biomater Sci Eng 3:2384–2390. https://doi.org/10.1021/acsbiomaterials.7b00297

    Article  CAS  Google Scholar 

  14. Mohseni-Vadeghani E, Karimi-Soflou R, Khorshidi S, Karkhaneh A (2021) Fabrication of oxygen and calcium releasing microcarriers with different internal structures for bone tissue engineering: solid filled versus hollow microparticles. Colloids Surf B Biointerfaces 197:111376. https://doi.org/10.1016/j.colsurfb.2020.111376

    Article  CAS  Google Scholar 

  15. McQuilling JP, Sittadjody S, Pendergraft S, Farney AC, Opara EC (2017) Applications of particulate oxygen-generating substances (POGS) in the bioartificial pancreas. Biomater Sci 5:2437–2447. https://doi.org/10.1039/C7BM00790F

    Article  CAS  Google Scholar 

  16. Gavezzotti A, Lo Presti L, Rizza S (2022) Molecular dynamics simulation of organic materials: structure, potentials and the MiCMoS computer platform. CrystEngComm 24:922–930

    Article  CAS  Google Scholar 

  17. Smith A, Dong X, Raghavan V (2022) An Overview of molecular dynamics simulation for food products and processes. Processes 10:119. https://doi.org/10.3390/pr10010119

    Article  CAS  Google Scholar 

  18. Anderson RL, Yang Q, Ediger AM (2018) Comparing gas transport in three polymers via molecular dynamics simulation. Phys Chem Chem Phys 20:22123–22133. https://doi.org/10.1039/C8CP02829J

    Article  CAS  Google Scholar 

  19. Sun D, Zhou J (2012) Effect of water content on microstructures and oxygen permeation in PSiMA-IPN-PMPC hydrogel: a molecular simulation study. Chem Eng Sci 78:236–245. https://doi.org/10.1016/j.ces.2011.11.020

    Article  CAS  Google Scholar 

  20. Wang Y, Wei Q, Wang S, Chai W, Zhang Y (2017) Structural and water diffusion of poly(acryl amide)/poly(vinyl alcohol) blend films: experiment and molecular dynamics simulations. J Mol Graph Model 71:40–49. https://doi.org/10.1016/j.jmgm.2016.11.001

    Article  CAS  Google Scholar 

  21. Vasconcelos A, Gomes AC, Cavaco-Paulo A (2012) Novel silk fibroin/elastin wound dressings. Acta Biomater 8:3049–3060. https://doi.org/10.1016/j.actbio.2012.04.035

    Article  CAS  Google Scholar 

  22. Zhang H-P, Gandhi NS, Gu Y, Zhang Y, Tang Y (2020) Chitosan/graphene complex membrane for polymer electrolyte membrane fuel cell: a molecular dynamics simulation study. Int J Hydrog Energy 45:25960–25969. https://doi.org/10.1016/j.ijhydene.2020.03.124

    Article  CAS  Google Scholar 

  23. Hansen CM (2007) Hansen solubility parameters: A user’s handbook, 2nd edn. CRC Press, USA

    Book  Google Scholar 

  24. Shariatinia Z, Mazloom-Jalali A (2019) Chitosan nanocomposite drug delivery systems designed for the ifosfamide anticancer drug using molecular dynamics simulations. J Mol Liq 273:346–367. https://doi.org/10.1016/j.molliq.2018.10.047

    Article  CAS  Google Scholar 

  25. Yu R, Wang Q, Wang W, Xiao Y, Wang Z, Zhou X, Zhang X, Zhu X, Fang C (2021) Polyurethane/graphene oxide nanocomposite and its modified asphalt binder: Preparation, properties and molecular dynamics simulation. Mater Des 209:109994. https://doi.org/10.1016/j.matdes.2021.109994

    Article  CAS  Google Scholar 

  26. Sun D, Zhou J (2013) Molecular simulation of oxygen sorption and diffusion in the poly (lactic acid). Chin J Chem Eng 21:301–309. https://doi.org/10.1016/S1004-9541(13)60472-7

    Article  CAS  Google Scholar 

  27. Sahebi Jouibari I, Haddadi-Asl V, Mirhosseini MM (2019) A novel investigation on micro-phase separation of thermoplastic polyurethanes: simulation, theoretical, and experimental approaches. Iran Polym J 28:237–250. https://doi.org/10.1007/s13726-019-00695-6

    Article  CAS  Google Scholar 

  28. Karlsson GE, Gedde UW, Hedenqvist MS (2004) Molecular dynamics simulation of oxygen diffusion in dry and water-containing poly (vinyl alcohol). Polymer (Guildf) 45:3893–3900. https://doi.org/10.1016/j.polymer.2003.12.082

    Article  CAS  Google Scholar 

  29. Mohabatpour F, Karkhaneh A, Sharifi AM (2016) A hydrogel/fiber composite scaffold for chondrocyte encapsulation in cartilage tissue regeneration. RSC Adv 6:83135–83145. https://doi.org/10.1039/C6RA15592H

    Article  CAS  Google Scholar 

  30. Waite AJ, Bonner J, Autenrieth RL (1999) Kinetics and stoichiometry of oxygen release from solid peroxides. Environ Eng Sci 16:187–199. https://doi.org/10.1089/ees

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to Iran’s National Elites Foundation (INEF) for supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akbar Karkhaneh.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 340 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khorshidi, S., Karkhaneh, A. Cylindrical polyester/calcium peroxide oxygen-releasing microparticles: molecular dynamics simulation and experimental analyses. Iran Polym J 32, 45–58 (2023). https://doi.org/10.1007/s13726-022-01098-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-022-01098-w

Keywords

Navigation