Skip to main content
Log in

Pore structure properties of scaffolds constituted by aggregated microparticles of PCL and PCL-HA processed by phase separation

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

This work reports the design and fabrication of scaffolds made of aggregated microparticles of either polycaprolactone (PCL) or PCL loaded with hydroxyapatite (HA) nanoparticles for tissue engineering purposes. The scaffolds are obtained by the thermally induced phase separation (TIPS) technique, employing ethyl lactate (EL) as a green solvent for PCL processing, which avoided the use of potentially toxic chemicals. The TIPS process was further improved by using NaCl particles as a leachable porogen to obtain highly porous scaffolds with an interconnected network of large pores. The scaffolds were characterized to assess the effect of the processing conditions on their thermal properties, crystallinity, morphology and porous structure. The results of this study demonstrate that porous PCL and PCL-HA scaffolds, with architecture of aggregated microparticles, can be achieved by dissolving the polymer in an EL/water mixture and optimizing the freezing temperature. Besides, the incorporation of HA nanoparticles into the polymer resulted in scaffolds with a more heterogeneous morphology and structure. Concomitantly, the NaCl particles enabled to enhance the scaffolds porosity up to a value of 92 %, while they induced the formation of a highly interconnected network of large pores inside the aggregated microparticles structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. F.J. O’Brien, Materialstoday 14, 88 (2011)

    Google Scholar 

  2. T. Tateishi, G. Chen, T. Ushida, J. Art. Org. 5, 77 (2002)

    Article  Google Scholar 

  3. A. Salerno, D. Guarnieri, M. Iannone, S. Zeppetelli, P.A. Netti, Tissue Eng. Part A 16, 2661 (2010)

    Article  CAS  Google Scholar 

  4. H. Zhang, L. Zhou, W. Zhang, Tissue Eng. Part B (in press). doi:10.1089/ten.teb.2013.0452

  5. L.S. Nair, C.T. Laurencin, Prog. Polym. Sci. 32, 762 (2007)

    Article  CAS  Google Scholar 

  6. P.A. Gunatillake, R. Adhikari, Eur. Cells Mater. 5, 1 (2003)

    CAS  Google Scholar 

  7. A. Salerno, M. Oliviero, E. Di Maio, S. Iannace, P.A. Netti, J. Mater. Sci. Mater. Med. 21, 2569 (2010)

    Article  CAS  Google Scholar 

  8. J.R. Jones, Acta Biomater. 9, 4457 (2013)

    Article  CAS  Google Scholar 

  9. J.L. Simon, S. Michna, J.A. Lewis, E.D. Rekow, V.P. Thompson, J.E. Smay, A. Yampolsky, J.R. Parsons, J.L. Ricci, J. Biomed. Mater. Res. Part A 83A, 747 (2007)

    Article  CAS  Google Scholar 

  10. R. Murugan, S. Ramakrishna, Compos. Sci. Technol. 65, 2385 (2005)

    Article  CAS  Google Scholar 

  11. A. Salerno, S. Zeppetelli, E. Di Maio, S. Iannace, P.A. Netti, Compos. Sci. Technol. 70, 1838 (2010)

    Article  CAS  Google Scholar 

  12. S. Heo, S. Kim, J. Wei, Y. Hyun, H. Yun, D. Kim, J.W. Shin, J. Shin, J. Biomed. Mater. Res. Part A 89A, 108 (2009)

    CAS  Google Scholar 

  13. V. Karangeorgiou, D. Kaplan, Biomaterials 26, 5474 (2005)

    Article  Google Scholar 

  14. S. Yang, K. Leong, Z. Du, C. Chua, Tissue Eng. 7, 679 (2001)

    Article  CAS  Google Scholar 

  15. X. Liu, P.X. Ma, Biomaterials 30, 4094 (2009)

    Article  CAS  Google Scholar 

  16. M. Singh, B. Sandhu, A. Scurto, C. Berkland, M.S: Detamore. Acta Biomater. 6, 137 (2010)

    Article  CAS  Google Scholar 

  17. X. Shi, L. Ren, M. Tian, J. Yu, W. Huang, C. Du, D. Wang, Y. Wang, J. Mater. Chem. 20, 9140 (2010)

    Article  CAS  Google Scholar 

  18. A. Salerno, R. Levato, M.A. Mateos-Timoneda, E. Engel, P.A. Netti, J.A. Planell, J. Biomed. Mater. Res. Part A 101A, 720 (2013)

    Article  CAS  Google Scholar 

  19. M. Wang, L. Ma, D. Li, P. Jiang, C. Gao, J. Biomed. Mater. Res. Part A 101A, 3219 (2013)

    Article  CAS  Google Scholar 

  20. A. Salerno, C. Domingo, Mater. Sci. Eng. C 42, 102 (2014)

    Article  CAS  Google Scholar 

  21. S. Aparicio, R. Alcalde, Green Chem. 11, 65 (2009)

    Article  CAS  Google Scholar 

  22. A. Salerno, M.A. Fanovich, C. Domingo, J. Super, Fluids 95, 394 (2014)

    CAS  Google Scholar 

  23. J. Shen, X. Chen, W. Huang, J. Appl. Polym. Sci. 88, 1864 (2003)

    Article  CAS  Google Scholar 

  24. A. Salerno, S. Zeppetelli, E. Di Maio, S. Iannace, P.A. Netti, Biotechnol. Bioeng. 108, 963 (2011)

    Article  CAS  Google Scholar 

  25. X. Xiao, R. Liu, Q. Huang, X. Ding, J. Mater. Sci. Mater. Med. 20, 2375 (2009)

    Article  CAS  Google Scholar 

  26. L. Liu, Y. Wang, S. Guo, Z. Wang, W. Wang, J. Biomed. Mater. Res. Part B: Appl. Biomater. 100B, 956 (2012)

    Article  CAS  Google Scholar 

  27. D.R. Lloyd, S.S. Kim, K.E. Kinzer, J. Membr. Sci. 64, 1 (1991)

    Article  CAS  Google Scholar 

  28. S.S. Kim, D.R. Lloyd, J. Membr. Sci. 64, 13 (1991)

    Article  CAS  Google Scholar 

  29. K.S. McGuire, D.R. Lloyd, G.B.A. Lim, J. Membr. Sci. 79, 27 (1993)

    Article  CAS  Google Scholar 

  30. W.L. Murphy, R.G. Dennis, J.L. Kileny, D.J. Mooney, Tissue Eng. 8, 43 (2002)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of the Ministerio de Economía y Competitividad through the research project BIOREG (MAT2012-35161) and the CSIC Intramural Project 201460E113. Additional support has been provided by the Generalitat of Catalonia under project 2014SGR-377.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aurelio Salerno.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salerno, A., Domingo, C. Pore structure properties of scaffolds constituted by aggregated microparticles of PCL and PCL-HA processed by phase separation. J Porous Mater 22, 425–435 (2015). https://doi.org/10.1007/s10934-015-9911-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-015-9911-2

Keywords

Navigation