Skip to main content
Log in

Poly (N-vinyl formamide-co-acrylamide) hydrogels: synthesis, composition and rheology

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Poly(N-vinyl formamide-co-acrylamide) hydrogels were prepared by free radical chain polymerization using ammonium persulfate as redox initiator, N,N-Methylene bisacrylamide as crosslinker, and N, Nʹ, Nʹʹ, Nʹʹʹ-tetramethyl ethylenediamine as accelerator. The synthesis of hydrogels was confirmed by FTIR and SEM. The effect of compositional change and temperature on the mechanical and rheological behavior was explored in detail. Different rheological tests (flow curve, frequency sweep, creep recovery, and hysteresis loop) were conducted to study the effect of temperature (25–40 ℃), compositional change, and N-vinyl formamide concentration on the viscoelastic thixotropic behavior of copolymer hydrogels. Different rheological models (Bingham, modified Bingham, and Ostwald power law) were applied to check the pseudo plastic shear thinning non-Newtonian behavior, as confirmed by decline in viscosity with shear rate. Highly rough and microporous morphology, high thixotropy (hysteresis loop area of 4498.5 Pa s−1 obtained from the hysteresis loop test), and better recovery percentage (95% form creep recovery) were observed for hydrogels having increased N-vinyl formamide (NVF) concentration. The obtained results showed an increase in mechanical strength with increasing NVF concentration in the hydrogels and their valuable applications for wastewater treatment, drugs delivery, cosmetics and so on.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Chai Q, Jiao Y, Yu X (2017) Hydrogels for biomedical applications: their characteristics and the mechanisms behind them. Gels 3:6

    Article  PubMed Central  Google Scholar 

  2. Khan M, Shah LA, Khan MA, Khattak NS, Zhao H (2020) Synthesis of an un-modified gum arabic and acrylic acid based physically cross-linked hydrogels with high mechanical, self-sustainable and self-healable performance. Mater Sci Eng C 116:111278

    Article  CAS  Google Scholar 

  3. Khan M, Shah LA, Rehman T, Khan A, Iqbal A, Ullah M, Alam S (2020) Synthesis of physically cross-linked gum Arabic-based polymer hydrogels with enhanced mechanical, load bearing and shape memory behavior. Iran Polym J 29:351–360

    Article  CAS  Google Scholar 

  4. Shah LA, Haleem A, Sayed M, Siddiq M (2016) Synthesis of sensitive hybrid polymer microgels for catalytic reduction of organic pollutants. J Environ Chem Eng 4:3492–3497

    Article  CAS  Google Scholar 

  5. Ciolacu DE, Suflet DM (2018). In: Popa VI, Volf I (eds) Biomass as renewable raw material to obtain bioproducts of high-tech value. Elsevier

    Google Scholar 

  6. Shah LA (2019) Developing Ag-tercopolymer microgels for the catalytic reduction of p-nitrophenol and EosinY throughout the entire pH range. J Mol Liq 288:111045

    Article  Google Scholar 

  7. Zhao T, Wang G, Hao D, Chen L, Liu K, Liu M (2018) Macroscopic layered organogel-hydrogel hybrids with controllable wetting and swelling performance. Adv Funct Mater 28:1800793

    Article  Google Scholar 

  8. Khan SA, Shah LA, Shah M, Jamil I (2021) Engineering of 3D polymer network hydrogels for biomedical applications: a review. Polym Bull 12:1–21

    Google Scholar 

  9. Bakravi A, Ahamadian Y, Hashemi H, Namazi H (2018) Synthesis of gelatin-based biodegradable hydrogel nanocomposite and their application as drug delivery agent. Adv Polym Technol 37:2625–2635

    Article  CAS  Google Scholar 

  10. Driest PJ, Allijn IE, Dijkstra DJ, Stamatialis D, Grijpma DW (2020) Poly (ethylene glycol)-based poly (urethane isocyanurate) hydrogels for contact lens applications. Polym Int 69:131–139

    Article  CAS  Google Scholar 

  11. Parente M, Ochoa Andrade A, Ares G, Russo F, Jiménez-Kairuz Á (2015) Bioadhesive hydrogels for cosmetic applications. Int J Cosmetic Sci 37:511–518

    Article  CAS  Google Scholar 

  12. Tanan W, Panichpakdee J, Saengsuwan S (2019) Novel biodegradable hydrogel based on natural polymers: synthesis, characterization, swelling/reswelling and biodegradability. Eur Polym J 112:678–687

    Article  CAS  Google Scholar 

  13. Rehman TU, Shah LA, Khan M, Irfan M, Khattak NS (2019) Zwitterionic superabsorbent polymer hydrogels for efficient and selective removal of organic dyes. RSC Adv 9:18565–18577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rehman TU, Bibi S, Khan M, Ali I, Shah LA, Khan A, Ateeq M (2019) Fabrication of stable superabsorbent hydrogels for successful removal of crystal violet from waste water. RSC Adv 9:40051–40061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Subhan H, Alam S, Shah LA, Ali MW, Farooq M (2021) Sodium alginate grafted poly (N-vinyl formamide-co-acrylic acid)-bentonite clay hybrid hydrogel for sorptive removal of methylene green from wastewater. Colloids Surf A 611:125853

    Article  CAS  Google Scholar 

  16. Jiang H, Wang Z, Geng H, Song X, Zeng H, Zhi C (2017) Highly flexible and self-healable thermal interface material based on boron nitride nanosheets and a dual cross-linked hydrogel. ACS Appl Mater Interfaces 9:10078–10084

    Article  CAS  PubMed  Google Scholar 

  17. Feng Z, Zuo H, Gao W, Ning N, Tian M, Zhang L (2018) A Robust, self-healable, and shape memory supramolecular hydrogel by multiple hydrogen bonding interactions. Macromol Rap Commun 39:1800138

    Article  Google Scholar 

  18. Hajebi S, Abdollahi A, Roghani-Mamaqani H, Salami-Kalajahi M (2020) Temperature-responsive poly (N-isopropylacrylamide) nanogels: the role of hollow cavities and different shell cross-linking densities on doxorubicin loading and release. Langmuir 36:2683–2694

    Article  CAS  PubMed  Google Scholar 

  19. Aalaie J, Vasheghani-Farahani E (2012) Swelling behavior of sulfonated polyacrylamide nanocomposite hydrogels in electrolyte solutions: comparison of theoretical and experimental results. Iran Polym J 21:175–183

    Article  CAS  Google Scholar 

  20. Ali MAM, Alsabagh AM, Sabaa MW, El-Salamony RA, Mohamed RR, Morsi RE (2020) Polyacrylamide hybrid nanocomposites hydrogels for efficient water treatment. Iran Polym J 29:455–466

    Article  CAS  Google Scholar 

  21. Kaşgöz H, Özgümüş S, Orbay M (2003) Modified polyacrylamide hydrogels and their application in removal of heavy metal ions. Polymer 44:1785–1793

    Article  Google Scholar 

  22. Hajebi S, Abdollahi A, Roghani-Mamaqani H, Salami-Kalajahi M (2019) Hybrid and hollow Poly (N, N-dimethylaminoethyl methacrylate) nanogels as stimuli-responsive carriers for controlled release of doxorubicin. Polymer 180:121716

    Article  CAS  Google Scholar 

  23. Zareie C, Sefti MV, Bahramian AR, Salehi MB (2018) A polyacrylamide hydrogel for application at high temperature and salinity tolerance in temporary well plugging. Iran Polym J 27:577–587

    Article  CAS  Google Scholar 

  24. Gupta P, Purwar R (2021) Influence of cross-linkers on the properties of cotton grafted poly (acrylamide-co-acrylic acid) hydrogel composite: swelling and drug release kinetics. Iran Polym J 30:381–391

    Article  CAS  Google Scholar 

  25. Rahmani Z, Sahraei R, Ghaemy M (2018) Preparation of spherical porous hydrogel beads based on ion-crosslinked gum tragacanth and graphene oxide: study of drug delivery behavior. Carbohydr Polym 194:34–42

    Article  CAS  PubMed  Google Scholar 

  26. Zhu X, Zhang F, Zhang L, Zhang L, Song Y, Jiang T, Sayed S, Lu C, Wang X, Sun J (2018) A highly stretchable cross-linked polyacrylamide hydrogel as an effective binder for silicon and sulfur electrodes toward durable lithium-ion storage. Adv Funct Mater 28:1705015

    Article  Google Scholar 

  27. Mukhopadhyay P, Sarkar K, Bhattacharya S, Bhattacharyya A, Mishra R, Kundu P (2014) pH sensitive N-succinyl chitosan grafted polyacrylamide hydrogel for oral insulin delivery. Carbohydr Polym 112:627–637

    Article  CAS  PubMed  Google Scholar 

  28. Sokol ER, Karram MM, Dmochowski R (2014) Efficacy and safety of polyacrylamide hydrogel for the treatment of female stress incontinence: a randomized, prospective, multicenter North American study. J Urol 192:843–849

    Article  CAS  PubMed  Google Scholar 

  29. Peng H, Huang X, Melle A, Karperien M, Pich A (2019) Redox-responsive degradable prodrug nanogels for intracellular drug delivery by crosslinking of amine-functionalized poly (N-vinylpyrrolidone) copolymers. J Colloid Interface Sci 540:612–622

    Article  CAS  PubMed  Google Scholar 

  30. Gui Q, Ouyang Q, Zhang J, Shi S, Chen X (2021) Ultrahigh flux and strong affinity poly (N-vinylformamide)-grafted polypropylene membranes for continuous removal of organic micropollutants from water. ACS Appl Mater Interfaces 13:20796–20809

    Article  CAS  PubMed  Google Scholar 

  31. Bialczyk J, Kochanowski A, Czaja-Prokop U, Chrapusta E (2014) Removal of microcystin-LR from water by polymers based on N-vinylformamide structure. Water Supply 14:230–237

    Article  CAS  Google Scholar 

  32. Marhefka JN, Marascalco PJ, Chapman TM, Russell AJ, Kameneva MV (2006) Poly (N-vinylformamide) a drag-reducing polymer for biomedical applications. Biomacromol 7:1597–1603

    Article  CAS  Google Scholar 

  33. Sheikholeslami P, Muirhead B, Baek DSH, Wang H, Zhao X, Sivakumaran D, Boyd S, Sheardown H, Hoare T (2015) Hydrophobically-modified poly (vinyl pyrrolidone) as a physically-associative, shear-responsive ophthalmic hydrogel. Exper Eye Res 137:18–31

    Article  CAS  Google Scholar 

  34. Świder J, Tąta A, Sokołowska K, Witek E, Proniewicz E (2015) Studies on N-vinylformamide cross-linked copolymers. J Mol Structure 1102:42–49

    Article  Google Scholar 

  35. Xiong C, Wei F, Li W, Liu P, Wu Y, Dai M, Chen J (2018) Mechanism of polyacrylamide hydrogel instability on high-temperature conditions. ACS Omega 3:10716–10724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bashir S, Teo YY, Ramesh S, Ramesh K (2017) Physico-chemical characterization of pH-sensitive N-Succinyl chitosan-g-poly (acrylamide-co-acrylic acid) hydrogels and in vitro drug release studies. Polym Degrad Stab 139:38–54

    Article  CAS  Google Scholar 

  37. Bochek A, Shevchuk I, Gavrilova I, Nesterova N, Panarin E, Yudin V, Lebedeva M, Popova E, Kalyuzhnaya L, Volchek B (2012) Compatibility of carboxymethyl cellulose ionized to various degrees with poly-N-vinylformamide in composite films. Russian J Appl Chem 85:1413–1421

    Article  CAS  Google Scholar 

  38. Ajiro H, Kan K, Akashi M (2017) Thermal treatment of poly (N-vinylformamide) produced hydrogels without the use of chemical crosslinkers. J Nanosci Nanotechnol 17:837–841

    Article  CAS  PubMed  Google Scholar 

  39. Chauhan G, Verma A, Das A, Ojha K (2018) Rheological studies and optimization of Herschel-Bulkley flow parameters of viscous karaya polymer suspensions using GA and PSO algorithms. Rheol Acta 57:267–285

    Article  CAS  Google Scholar 

  40. Nair R, Choudhury AR (2020) Synthesis and rheological characterization of a novel shear thinning levan gellan hydrogel. Int J Biolog Macromol 159:922–930

    Article  CAS  Google Scholar 

  41. Huang Y, Zheng W, Zhang D, Xi Y (2020) A modified Herschel-Bulkley model for rheological properties with temperature response characteristics of poly-sulfonated drilling fluid. Energy Sources Part A 42:1464–1475

    Article  CAS  Google Scholar 

  42. Zandi N, Sani ES, Mostafavi E, Ibrahim DM, Saleh B, Shokrgozar MA, Tamjid E, Weiss PS, Simchi A, Annabi N (2021) Nanoengineered shear-thinning and bioprintable hydrogel as a versatile platform for biomedical applications. Biomaterials 267:120476

    Article  CAS  PubMed  Google Scholar 

  43. Rehman TU, Shah LA (2019) Rheological investigation of GO doped p (APTMACl) composite hydrogel. Z Phys Chem 2019:1416

    Google Scholar 

  44. Ali I, Shah LA (2020) Rheological investigation of the viscoelastic thixotropic behavior of synthesized polyethylene glycol-modified polyacrylamide hydrogels using different accelerators. Polym Bull 78:1275–1291

    Article  Google Scholar 

  45. Irfan M, Khan M, ur Rehman T, Ali I, Shah LA, Khattak NS, Khan MS (2021) Synthesis and rheological survey of xanthan gum based terpolymeric hydrogels. Z Phys Chem 235:609–628

    Article  CAS  Google Scholar 

  46. Jafarigol E, Salehi MB, Mortaheb HR (2021) Synergetic effects of additives on structural properties of acrylamide-based hydrogel. J Dispers Sci Technol 42:910–919

    Article  CAS  Google Scholar 

  47. Gong J, Wang L, Wu J, Yuan Y, Mu RJ, Du Y, Wu C, Pang J (2019) The rheological and physicochemical properties of a novel thermosensitive hydrogel based on konjac glucomannan/gum tragacanth. LWT 100:271–277

    Article  CAS  Google Scholar 

  48. Ma J, Lin Y, Chen X, Zhao B, Zhang J (2014) Flow behavior, thixotropy and dynamical viscoelasticity of sodium alginate aqueous solutions. Food Hydrocolloids 38:119–128

    Article  CAS  Google Scholar 

  49. Zhu L, Qiu J, Sakai E (2017) A high modulus hydrogel obtained from hydrogen bond reconstruction and its application in vibration damper. RSC Adv 7:43755–43763

    Article  CAS  Google Scholar 

  50. Ye L, Wang C, Wang S, Zhou S, Liu X (2016) Thermal and rheological properties of brown flour from Indica rice. J Cereal Sci 70:270–274

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Higher Education Commission of Pakistan is gratefully acknowledge for financial support under research project No. 7309.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luqman Ali Shah.

Ethics declarations

Conflict of interest

No conflict of interest exists to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, L.A., Gul, K., Ali, I. et al. Poly (N-vinyl formamide-co-acrylamide) hydrogels: synthesis, composition and rheology. Iran Polym J 31, 845–856 (2022). https://doi.org/10.1007/s13726-022-01043-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-022-01043-x

Keywords

Navigation