Skip to main content

Advertisement

Log in

Tunable alignment and properties of Fe3O4/natural rubber nanocomposites

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Although aligned magnetorheological elastomers (MREs) have been reported, there is still a major challenge to prepare aligned magnetorheological elastomers based on natural rubber (NR) or other synthetic rubbers. The result is attributed to the fact that magnetic particles are difficult to align in one direction, and the orientation in solid rubber due to its high hardness restricts the movement of magnetic particles. Here, a new thermal–mechanical–magnetic coupling molding equipment was developed to simultaneously provide heat and magnetic field. Therefore, the magnetic particles can be easily aligned in the ultra-soft rubber matrix to form aligned magneto-rheological elastomers. Furthermore, the mechanical, magnetic, thermal and swelling properties of aligned and random magneto-rheological elastomers were investigated and compared in detail. The aligned magneto-rheological elastomers showed a higher tensile strength (16.7 MPa), magneto-rheological effect (171.0%) and magnetic saturation intensity (31.3 emu/g) compared to random magneto-rheological elastomers (14.8 MPa, 168% and 26.2 emu/g), respectively. Furthermore, the solvation swelling degree (90%) of aligned magneto-rheological elastomers was also lower than that of random magneto-rheological elastomers (147%), indicating a good solvent resistance. These results were attributed to the tailoring alignment of Fe3O4 nanoparticles in the natural rubber matrix. The work provides a new method to tailoring distribution and properties of magneto-rheological elastomers based on rubbers with high hardness suitable for various applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bastola AK, Hossain M (2020) A review on magneto-mechanical characterizations of magnetorheological elastomers. Compos Part B 200:108348

    Article  CAS  Google Scholar 

  2. Bastola AK, Paudel M, Li L, Li WH (2020) Recent progress of magnetorheological elastomers: a review. Smart Mater Struct 29:123002

    Article  CAS  Google Scholar 

  3. Alam MN, Kumar V, Lee DJ, Choi J (2021) Magnetically active response of acrylonitrile-butadiene-rubber-based magnetorheological elastomers with different types of iron fillers and their hybrid. Compos Commun 24:100657

    Article  Google Scholar 

  4. Hossain M, Saxena PR, Steinmann P (2015) Modelling the mechanical aspects of the curing process of magneto-sensitive elastomeric materials. Int J Solids Struct 58:257–269

    Article  CAS  Google Scholar 

  5. Wang Y, Guo GZ, Zhou YY, Sun YY, Li DS, Liu YQ, Zhao GZ (2019) Facile synthesis of magnetic rubber foam with cellular structure by one-step solution foam processing for application in giant magnetostriction. Compos Sci Technol 170:34–41

    Article  CAS  Google Scholar 

  6. Song QC, Chen BX, Zhou ZH, Lu CH (2021) Flexible, stretchable and magnetic Fe3O4@Ti3C2Tx/elastomer with supramolecular interfacial crosslinking for enhancing mechanical and electromagnetic interference shielding performance. Sci China Mater 64:1437–1448

    Article  CAS  Google Scholar 

  7. Agirre-OlabideI EMJ (2018) A new magneto-dynamic compression technique for magnetorheological elastomers at high frequencies. Polym Test 66:114–121

    Article  Google Scholar 

  8. Alam MN, Kumar V, Ryu SR, Choi J, Lee DJ (2020) Magnetic response properties of natural-rubber-based magnetorheological elastomers with different-structured iron fillers. J Magn Magn Mater 513:167106

    Article  Google Scholar 

  9. Xu CH, Lin MZ, Wang XH, Shen Q, Zheng ZJ, Lin BF, Fu LH (2021) Fabrication of high-performance magnetic elastomers by using natural polymer as auxiliary dispersant of Fe3O4 nanoparticles. Compos Part A 140:106158

    Article  CAS  Google Scholar 

  10. Hemeda OM, Henaish AMA, Salem BI, El-Sbakhy FS, Hamad MA (2021) The dielectric and magnetic properties of RTV-silicon rubber Ni-Cr ferrite composites. Appl Phys A 126:121

    Article  Google Scholar 

  11. Zhang XZ, Peng SL, Wen WJ, Li WH (2008) Analysis and fabrication of patterned magnetorheological elastomers. Smart Mater Struct 17:045001

    Article  Google Scholar 

  12. Sang GL, Xu P, Yan T, Murugadoss V, Naik N, Ding YS, Guo ZH (2021) Interface engineered microcellular magnetic conductive polyurethane nanocomposite foams for electromagnetic interference shielding. Nano Micro Lett 13:153

    Article  CAS  Google Scholar 

  13. Bastolaa AK, Paudela M, Li L (2020) Dot-patterned hybrid magnetorheological elastomer developed by 3D Printing. J Magn Magn Mater 494:165825

    Article  Google Scholar 

  14. Wang Y, Ma YB, Sun YY, Guo GZ, Liu YQ (2019) In situ latex synthesis of magnetic polymer nanocomposites for application in magnetorheological materials. Polym Adv Technol 30:2005–2016

    Article  CAS  Google Scholar 

  15. Forster E, Mayer M, Rabindranath R, Böse H, Schlunck G, Monkman GJ, Shamonin M (2013) Patterning of ultrasoft, agglutinative magnetorheological elastomers. J Appl Polym Sci 128:2508–2515

    Article  CAS  Google Scholar 

  16. Moreno MA, Gonzalez-Rico J, Lopez-Donaire ML, Arias A, Garcia-Gonzalez D (2021) New experimental insights into magneto-mechanical rate dependences of magnetorheological elastomers. Composites Part B 224:109148

    Article  CAS  Google Scholar 

  17. Garcia-Gonzalez D, Moreno MA, Valencia L, Arias A, Velasco D (2021) Influence of elastomeric matrix and particle volume fraction on the mechanical response of magneto-active polymers. Compos Part B 215:108796

    Article  CAS  Google Scholar 

  18. Volpe V, Davino D, Sorrentino L, Gorrasi G, Pantani R (2018) Smart behavior of elastomeric composites produced by injection molding. J Appl Polym Sci 46863:1–7

    Google Scholar 

  19. Chen L, Gong XL, Jiang WQ, YaoJJ DHX, Li WH (2007) Investigation on magnetorheological elastomers based on natural rubber. J Mater Sci 42:5483–5489

    Article  CAS  Google Scholar 

  20. Bastola AK, Paudel M, Li L (2019) Line-patterned hybrid magnetorheological elastomer developed by 3D printing. J Intell Mater Syst Struct 31:377–388

    Article  Google Scholar 

  21. Qiao YL, Zhang JT, Zhang M, Liu LS, Zhai PC (2021) A magnetic field- and frequency-dependent dynamic shear modulus model for isotropic silicone rubber-based magnetorheological elastomers. Compos Sci Technol 204:108637

    Article  CAS  Google Scholar 

  22. Lee DK, Lee MC, Jung NC, Yun MY, Lee JC, Thundat T, Jeon S (2014) Modulus-tunable magnetorheological elastomer microcantilevers. Smart Mater Struct 23:055017

    Article  CAS  Google Scholar 

  23. Yao JF, Yang W, Gao Y, Scarpa F, Li Y (2019) Magnetorheological elastomers with particle chain orientation: modelling and experiments. Smart Mater Struct 28:095008

    Article  CAS  Google Scholar 

  24. Cvek M, Moucka R, SedlacikM BV, Pavlinek V (2017) Enhancement of radio-absorbing properties and thermal conductivity of polysiloxanebased magnetorheological elastomers by the alignment of filler particles. Smart Mater Struct 26:095005

    Article  Google Scholar 

  25. Boczkowska A, Awietjan S (2012) Microstructure and properties of magnetorheological elastomers. Adv Elastomers Technol Prop Appl 12:595

    Google Scholar 

  26. CaoLMCheng ZZ, Yan MW, Chen YK (2019) Anisotropic rubber nanocomposites via magnetic-induced alignment of Fe3O4/cellulose nanocrystals hybrids obtained by templated assembly. Chem Eng J 363:203–212

    Article  Google Scholar 

  27. Agirre OI, Kuzhir P, Elejabarrieta MJ (2018) Linear magneto-viscoelastic model based on magnetic permeability components for anisotropic magnetorheological elastomers. J Magn Magn Mater 446:155

    Article  Google Scholar 

  28. Tian TF, Nakano M (2017) Fabrication and characterizationof anisotropic magnetorheological elastomer with 45oiron particle alignment at various silicone oil concentrations. J Intell Mat Syst Struct 29:151

    Article  Google Scholar 

  29. Hayeemasae N, Ismail H (2020) Synergistic improvement of mechanical and magnetic properties of a new magnetorheological elastomer composites based on natural rubber and powdered waste natural rubber glove. Polimeros 30:2020020

    Article  Google Scholar 

  30. Hegde S, Kiran K, Gangadharan KV (2015) A novel approach to investigate effect of magnetic field on dynamic properties of natural rubber based isotropic thick magnetorheological elastomers in shear mode. J Cent South Univ 22:2612–2619

    Article  Google Scholar 

  31. Sun YY, Zhang WH, Yu HL, Hou CL, Li DS (2015) Controlled synthesis various shapes Fe3O4decorated reduced graphene oxide applied in the electrochemical detection. J Alloys Compd 638:182

    Article  CAS  Google Scholar 

  32. Hou CL, Gao L, Yu HL, Sun YY, Yao JR, Zhao GZ, Liu YQ (2016) Preparation of magnetic rubber with high mechanical properties by latex compounding method. J MagnMagnMater 407:252

    CAS  Google Scholar 

  33. Huang P, Tan D, Li QM, Li YQ, Fu YQ, Hu N, Fu SY (2020) Dual-mode carbon aerogel/iron rubber sensor. ACS Appl Mater Inter 12:8674–8680

    Article  CAS  Google Scholar 

  34. Alikhanzadeh AS, Almasi KM, Sargazi S, Rahdar A, Arshad R, Baino F (2021) CoNiZn and CoNiFe nanoparticles: synthesis, physical characterization, and in vitro cytotoxicity evaluations. Appl Sci 11:5339

    Article  Google Scholar 

  35. Sorokin VV, Ecker E, Stepanov GV (2014) Experimental study of the magnetic field enhanced Payne effect in magnetorheological elastomers. Soft Matter 10:8765

    Article  CAS  PubMed  Google Scholar 

  36. Ou JH, Ge C, Kong ZX, Chen YJ, Dai ZL (2020) Synthesis of a novel alpha-zirconium phosphate and investigation of influence on thermal stability of addition cured silicon rubber. J Therm Anal Calorim 139:2079–2087

    Article  CAS  Google Scholar 

  37. Ubaidillah P, Endra DI, Hanafi C, Seung-Bok A, Aishah AM, Saiful A (2019) Swelling, thermal, and shear properties of a waste tire rubber based magnetorheological elastomer. Front Mater 6:47

    Article  Google Scholar 

  38. Hayeemasae N, Ismail H (2018) Curing and swelling kinetics of new magnetorheological elastomer based on natural rubber/waste natural rubber gloves composites. J Elastomers Plast 51:583

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the support of the National Natural Science Foundation of China under grants 51773184 and U1810114, and the Shanxi Provincial Natural Science Foundation of China (201803D421081 and 20181102014).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiong Zhang or Youyi Sun.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Li, X., Ren, Y. et al. Tunable alignment and properties of Fe3O4/natural rubber nanocomposites. Iran Polym J 31, 799–807 (2022). https://doi.org/10.1007/s13726-022-01038-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-022-01038-8

Keywords

Navigation