Skip to main content
Log in

Microencapsulation of Thymus fontanesii extracts in pectin/casein: characterization, release behavior and storage stability

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

The present study aims to enhance the stability of Thymus fontanesii essential oil (TEO) and its main component thymol, and to prolong their release from encapsulation in pectin/casein matrix using complex coacervation and dried by freeze methods. Encapsulation efficiency, structural, physical and thermal properties of the microcapsules were determined. Storage stability of free and microencapsulated thyme extracts was evaluated and the controlled release kinetics of microcapsules in simulated gastrointestinal fluids were studied. Respectively, the successes of TEO and thymol encapsulation were confirmed by FTIR and X-ray diffraction analyses with encapsulation efficiency of 91.85 ± 1.35% and 93.66 ± 1.13%. The particle size ranged from 4.47 to 517.20 μm, presented a good thermal resistance and irregular shapes with rough surface. Prolonged release of the extracts from microcapsules was demonstrated with Higuchi behavior in gastric fluids while for simulated intestinal fluid, the non-Fickian transport was the main release mechanism. The microencapsulation of thyme extracts enhanced its thermal stability and proved that the thyme extracts were effectively well protected in microcapsules after a long time storage. The use of pectin/casein has shown good performance as a biodegradable matrix for protection and storage of thyme extracts, prolonging their storage stability and release. Therefore, these microcapsules can be useful ingredients for both food and pharmaceutical new products, to prolong bioavailability of bioactive compounds and to improve their thermal and storage stability.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lammari N, Louaer O, Meniai AH, Fessi H, Elaissari A (2021) Plant oils: from chemical composition to encapsulated form use. Int J Pharm 601:120538

    Article  CAS  PubMed  Google Scholar 

  2. Mancini E, Senatore F, Del Monte D, De Martino L, Grulova D, Scognamiglio M, Snoussi M, De Feo V (2015) Studies on chemical composition, antimicrobial and antioxidant activities of five Thymus vulgaris L. essential oils. Molecules 20:12016–12028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Baldim I, Tonani L, von Zeska Kress MR, Pereira Oliveira W (2019) Lippia sidoides essential oil encapsulated in lipid nanosystem as an anti-Candida agent. Indust Crop Prod 127:73–81

    Article  CAS  Google Scholar 

  4. Feyzioglu GC, Tornuk F (2016) Development of chitosan nanoparticles loaded with summer savory (Satureja hortensis L.) essential oil for antimicrobial and antioxidant delivery applications. LWT 70:104–110

    Article  CAS  Google Scholar 

  5. Mebarki N, Nabiev M, Ziane H, Chader H, Fazouane F (2020) Preparation, characterization and in vitro antimicrobial activity evaluation of thyme essential oil formulation to treat skin infections. J Fundament Appl Sci 12:1–16

    CAS  Google Scholar 

  6. Mouhi L, Moghrani H, Nasrallah N, Amrane A, Maachi R (2017) Anti-inflammatory activity of essential oil of an endemic Thymus fontanesii Boiss. & Reut. with chemotype carvacrol, and its healing capacity on gastric lesions. J Food Biochem 41:e12359

    Article  Google Scholar 

  7. Salehi B, Mishra AP, Shukla I, Sharifi-Rad M, Contreras MdM, Segura-Carretero A, Fathi H, Nasrabadi NN, Kobarfard F, Sharifi-Rad J (2018) Thymol, thyme, and other plant sources: health and potential uses. Phytother Res 32:1688–1706

    Article  PubMed  Google Scholar 

  8. Pan K, Chen H, Davidson PM, Zhong Q (2014) Thymol nanoencapsulated by sodium Caseinate: physical and antilisterial properties. J Agricul Food Chem 62:1649–1657

    Article  CAS  Google Scholar 

  9. Barbieri N, Sanchez-Contreras A, Canto A, Cauich-Rodriguez JV, Vargas-Coronado R, Calvo-Irabien LM (2018) Effect of cyclodextrins and Mexican oregano (Lippia graveolens Kunth) chemotypes on the microencapsulation of essential oil. Indust Crops Prod 121:114–123

    Article  CAS  Google Scholar 

  10. Cimino C, Maurel OM, Musumeci T, Bonaccorso A, Drago F, Souto EMB, Pignatello R, Carbone C (2021) Essential oils: pharmaceutical applications and encapsulation strategies into lipid-based delivery systems. Pharmaceutics 13:327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Froiio F, Lammari N, Tarhini M, Alomari M, Louaer W, Meniai AH, Paolino D, Fessi H, Elaissari A (2020) Polymer-based nanocontainers for drug delivery. In: Elsevier (ed) Smart Nanocontain 271–285

  12. Shetta A, Kegere J, Mamdouh W (2019) Comparative study of encapsulated peppermint and green tea essential oils in chitosan nanoparticles: encapsulation, thermal stability, in-vitro release, antioxidant and antibacterial activities. Int J Biolog Macromol 126:731–742

    Article  CAS  Google Scholar 

  13. Tarhini M, Badri W, Greige-Gerges H, Fessi H, Elaissari A (2021) Nanoparticles/nanoplatform to carry and deliver the drug molecules to the target site. In: Elsevier (ed) Drug Delivery Devices and Therapeutic Systems, 249–266

  14. Armendáriz-Barragán B, Zafar N, Badri W, Galindo-Rodríguez SA, Kabbaj D, Fessi H, Elaissari A (2016) Plant extracts: from encapsulation to application. Expert Opin Drug Deliv 13:1165–1175

    Article  PubMed  Google Scholar 

  15. Lammari N, Demautis T, Louaer O, Meniai AH, Casabianca H, Bensouici C, Devouassoux G, Fessi H, Bentaher A, Elaissari A (2021) Nanocapsules containing Saussurea lappa essential oil: formulation, characterization, antidiabetic, anti-cholinesterase and anti-inflammatory potentials. Int J Pharm 593:120138

    Article  CAS  PubMed  Google Scholar 

  16. Yuan Y, Li M-F, Chen W-S, Zeng Q-Z, Su D-X, Tian B, He S (2018) Microencapsulation of shiitake (Lentinula edodes) essential oil by complex coacervation: formation, rheological property, oxidative stability and odour attenuation effect. Int J Food Sci Technol 53:1681–1688

    Article  CAS  Google Scholar 

  17. Dima C, Cotârlet M, Alexe P, Dima S (2014) Reprint of “Microencapsulation of essential oil of piment [Pimenta dioica (L) Merr.] by chitosan/k-carrageenan complex coacervation method”. Innov Food Sci Emerg Technol 25:97–105

    Article  Google Scholar 

  18. Comunian TA, Nogueira M, Scolaro B, Thomazini M, Ferro-Furtado R, de Castro IA, Favaro-Trindade CS (2018) Enhancing stability of echium seed oil and beta-sitosterol by their coencapsulation by complex coacervation using different combinations of wall materials and crosslinkers. Food Chem 252:277–284

    Article  CAS  PubMed  Google Scholar 

  19. Xiao Z, Liu W, Zhu G, Zhou R, Niu Y (2014) A review of the preparation and application of flavour and essential oils microcapsules based on complex coacervation technology. J Sci Food Agricul 94:1482–1494

    Article  CAS  Google Scholar 

  20. Flores-Rojas AI, Díaz-Flores PE, Medellín-Castillo NA, Ovando-Medina VM, Rodríguez-Ortiz JC (2020) Biomaterials based on chitosan/orange peel as a controlled release matrix for KNO3: synthesis, characterization and their performance evaluation. Iran Polym J 29:1007–1017

    Article  CAS  Google Scholar 

  21. Verdi AG, de Souza AG, Rocha DB, de Oliveira SA, Alves RMV, dos Santos RD (2020) Biodegradable films functionalized with Moringa oleifera applied in food packaging. Iran Polym J 30:235–246

    Article  Google Scholar 

  22. López-Mata MA, Gastelum-Cabrera M, Valbuena-Gregorio E, Zamudio-Flores PB, Burruel-Ibarra SE, Morales-Figueroa GG, Quihui-Cota L, Juárez-Onofre JE (2018) Physicochemical properties of novel pectin/Aloe gel membranes. Iran Polym J 27:545–553

    Article  Google Scholar 

  23. Hu L, Gao N, Li J, Sun Y, Yang X (2015) Development and evaluation of novel microcapsules containing poppy-seed oil using complex coacervation. J Food Eng 161:87–93

    Article  Google Scholar 

  24. Zainudin BH, Wong TW, Hamdan H (2018) Design of low molecular weight pectin and its nanoparticles through combination treatment of pectin by microwave and inorganic salts. Polym Degrad Stabil 147:35–40

    Article  CAS  Google Scholar 

  25. Souza CJF, da Costa AR, Souza CF, Tosin FFS, Garcia-Rojas EE (2018) Complex coacervation between lysozyme and pectin: effect of pH, salt, and biopolymer ratio. Int J Biolog Macromol 107:1253–1260

    Article  CAS  Google Scholar 

  26. Munarin F, Tanzi MC, Petrini P (2012) Advances in biomedical applications of pectin gels. Int J Biolog Macromol 51:681–689

    Article  CAS  Google Scholar 

  27. Bonnaillie L, Zhang H, Akkurt S, Yam K, Tomasula P (2014) Casein films: the effects of formulation, environmental conditions and the addition of citric pectin on the structure and mechanical properties. Polymers 6:2018–2036

    Article  Google Scholar 

  28. Awasthi R, Kulkarni GT, Ramana MV, de Jesus Andreoli Pinto T, Kikuchi IS, Molim Ghisleni DD, de Souza Braga M, De Bank P, Dua K (2017) Dual crosslinked pectin–alginate network as sustained release hydrophilic matrix for repaglinide. Int J Biolog Macromol 97:721–732

    Article  CAS  Google Scholar 

  29. Marreto RN, Ramos MFS, Silva EJ, de Freitas O, de Freitas LAP (2013) Impact of cross-linking and drying method on drug delivery performance of casein–pectin microparticles. AAPS Pharm Sci Technol 14:1227–1235

    Article  CAS  Google Scholar 

  30. Singh TP, Chauhan G, Agrawal RK, Mendiratta SK (2018) Response surface modeling and optimization of tomato puree–casein bio-composite films. Iran Polym J 27:861–879

    Article  CAS  Google Scholar 

  31. Baracat MM, Nakagawa AM, Casagrande R, Georgetti SR, Verri WA, de Freitas O (2012) Preparation and characterization of microcapsules based on biodegradable polymers: pectin/casein complex for controlled drug release systems. AAPS Pharm Sci Tech 13:364–372

    Article  CAS  Google Scholar 

  32. Mebarki N, Nabiev M, Ziane H, Chader H, Fazouane F (2020) Evaluation of biological activities of Thyme extracts and their use as a natural alternative to antibiotics for the reduction of pharmaceutical waste. Algerian J Environ Sci Technol 6:1272–1283

    CAS  Google Scholar 

  33. Nori MP, Favaro-Trindade CS, Matias de Alencar S, Thomazini M, de Camargo Balieiro JC, Contreras Castillo CJ (2011) Microencapsulation of propolis extract by complex coacervation. LWT 44:429–435

    Article  CAS  Google Scholar 

  34. Toledo Hijo AAC, da Costa JMG, Silva EK, Azevedo VM, Yoshida MI, Borges SV (2014) Physical and thermal properties of Oregano (Origanum vulgare L.) essential oil microparticles. J Food Proc Eng 38:1–10

    Article  Google Scholar 

  35. Ngamakeue N, Chitprasert P (2016) Encapsulation of holy basil essential oil in gelatin: effects of palmitic acid in carboxymethyl cellulose emulsion coating on antioxidant and antimicrobial activities. Food Bioproc Technol 9:1735–1745

    Article  CAS  Google Scholar 

  36. Esmaeili A, Asgari A (2015) In vitro release and biological activities of Carum copticum essential oil (CEO) loaded chitosan nanoparticles. Int J Biolog Macromol 81:283–290

    Article  CAS  Google Scholar 

  37. de Barros Fernandes RV, Marques GR, Borges SV, Botrel DA (2014) Effect of solids content and oil load on the microencapsulation process of rosemary essential oil. Indust Crop Prod 58:173–181

    Article  Google Scholar 

  38. Chitprasert P, Sutaphanit P (2014) Holy basil (Ocimum sanctum Linn.) essential oil delivery to swine gastrointestinal tract using gelatin microcapsules coated with aluminum carboxymethyl cellulose and beeswax. J Agricul Food Chem 62:12641–12648

    Article  CAS  Google Scholar 

  39. Binsi PK, Nayak N, Sarkar PC, Jeyakumari A, Muhamed Ashraf P, Ninan G, Ravishankar CN (2017) Structural and oxidative stabilization of spray dried fish oil microencapsulates with gum arabic and sage polyphenols: characterization and release kinetics. Food Chem 219:158–168

    Article  CAS  PubMed  Google Scholar 

  40. Mishra N, Rai VK, Yadav KS, Sinha P, Kanaujia A, Chanda D, Jakhmola A, Saikia D, Yadav NP (2015) Encapsulation of mentha oil in chitosan polymer matrix alleviates skin irritation. AAPS Pharm Sci Tech 17:482–492

    Article  Google Scholar 

  41. Li Q, Sun L-J, Gong X-F, Wang Y, Zhao X-L (2017) Simultaneous optimization of multiple response variables for the gelatin-chitosan microcapsules containing angelica essential oil. Iran J Pharm Res 16:50–62

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Bezerra FM, Carmona OG, Carmona CG, Lis MJ, de Moraes FF (2016) Controlled release of microencapsulated citronella essential oil on cotton and polyester matrices. Cellulose 23:1459–1470

    Article  CAS  Google Scholar 

  43. Rutz JK, Borges CD, Zambiazi RC, Crizel-Cardozo MM, Kuck LS, Noreña CPZ (2017) Microencapsulation of palm oil by complex coacervation for application in food systems. Food Chem 220:59–66

    Article  CAS  PubMed  Google Scholar 

  44. Liu C, Liang B, Shi G, Li Z, Zheng X, Huang Y, Lin L (2015) Preparation and characteristics of nanocapsules containing essential oil for textile application. Flavour Fragrance J 30:295–301

    Article  CAS  Google Scholar 

  45. Silva DF, Favaro-Trindade CS, Rocha GA, Thomazini M (2012) Microencapsulation of lycopene by gelatin-pectin complex coacervation. J Food Proc Preserv 36:185–190

    Article  CAS  Google Scholar 

  46. Rojas-Moreno S, Osorio-Revilla G, Gallardo-Velázquez T, Cárdenas-Bailón F, Meza-Márquez G (2018) Effect of the cross-linking agent and drying method on encapsulation efficiency of orange essential oil by complex coacervation using whey protein isolate with different polysaccharides. J Microencapsul 35:165–180

    Article  CAS  PubMed  Google Scholar 

  47. Pereira Souza AC, Deyse Gurak P, Damasceno Ferreira Marczak L (2017) Maltodextrin, pectin and soy protein isolate as carrier agents in the encapsulation of anthocyanins-rich extract from jaboticaba pomace. Food Bioprod Proc 102:186–194

    Article  CAS  Google Scholar 

  48. Sarabandi K, Sadeghi Mahoonak A, Hamishekar H, Ghorbani M, Jafari SM (2018) Microencapsulation of casein hydrolysates: physicochemical, antioxidant and microstructure properties. J Food Eng 237:86–95

    Article  CAS  Google Scholar 

  49. Nisar T, Wang Z-C, Yang X, Tian Y, Iqbal M, Guo Y (2018) Characterization of citrus pectin films integrated with clove bud essential oil: physical, thermal, barrier, antioxidant and antibacterial properties. Int J Biolog Macromol 106:670–680

    Article  CAS  Google Scholar 

  50. Zhang Y, Tan C, Abbas S, Eric K, Zhang X, Xia S, Jia C (2014) The effect of soy protein structural modification on emulsion properties and oxidative stability of fish oil microcapsules. Colloid Surf B 120:63–70

    Article  CAS  Google Scholar 

  51. Calderón-Oliver M, Pedroza-Islas R, Escalona-Buendía HB, Pedraza-Chaverri J, Ponce-Alquicira E (2017) Comparative study of the microencapsulation by complex coacervation of nisin in combination with an avocado antioxidant extract. Food Hydrocolloids 62:49–57

    Article  Google Scholar 

  52. Jain A, Thakur D, Ghoshal G, Katare OP, Shivhare US (2015) Microencapsulation by complex coacervation using whey protein isolates and gum acacia: an approach to preserve the functionality and controlled release of β-carotene. Food Bioproc Technol 8:1635–1644

    Article  CAS  Google Scholar 

  53. Chew SC, Tan CP, Nyam KL (2018) Microencapsulation of refined kenaf (Hibiscus cannabinus L.) seed oil by spray drying using β-cyclodextrin/gum arabic/sodium caseinate. J Food Eng 237:78–85

    Article  CAS  Google Scholar 

  54. Fernandes RVB, Botrel DA, Silva EK, Borges SV, Oliveira CR, Yoshida MI, Feitosa JPA, de Paula RCM (2016) Cashew gum and inulin: new alternative for ginger essential oil microencapsulation. Carbohydr Polym 153:133–142

    Article  CAS  PubMed  Google Scholar 

  55. Felix PHC, Birchal VS, Botrel DA, Marques GR, Borges SV (2017) Physicochemical and thermal stability of microcapsules of cinnamon essential oil by spray drying. J Food Proc Preserv 41:e12919

    Article  Google Scholar 

  56. Muhoza B, Xia S, Cai J, Zhang X, Duhoranimana E, Su J (2019) Gelatin and pectin complex coacervates as carriers for cinnamaldehyde: effect of pectin esterification degree on coacervate formation, and enhanced thermal stability. Food Hydrocolloids 87:712–722

    Article  CAS  Google Scholar 

  57. Mishra RK, Majeed ABA, Banthia AK (2011) Development and characterization of pectin/gelatin hydrogel membranes for wound dressing. Int J Plast Technol 15:82–95

    Article  CAS  Google Scholar 

  58. Kumar M, Mishra RK, Banthia AK (2011) Development of pectin based hydrogel membranes for biomedical applications. Int J Plast Technol 14:213–223

    Article  Google Scholar 

  59. Albano KM, Nicoletti VR (2018) Ultrasound impact on whey protein concentrate-pectin complexes and in the O/W emulsions with low oil soybean content stabilization. Ultrasonics Sonochem 41:562–571

    Article  CAS  Google Scholar 

  60. Maciel VBV, Yoshida CMP, Franco TT (2015) Chitosan/pectin polyelectrolyte complex as a pH indicator. Carbohydr Polym 132:537–545

    Article  CAS  PubMed  Google Scholar 

  61. Chung SK, Seo JY, Lim JH, Park HH, Yea MJ, Park HJ (2013) Microencapsulation of essential oil for insect repellent in food packaging system. J Food Sci 78:E709–E714

    Article  CAS  PubMed  Google Scholar 

  62. Wu Y, Luo Y, Wang Q (2012) Antioxidant and antimicrobial properties of essential oils encapsulated in zein nanoparticles prepared by liquid–liquid dispersion method. LWT 48:283–290

    Article  Google Scholar 

  63. Celebioglu A, Yildiz ZI, Uyar T (2018) Thymol/cyclodextrin inclusion complex nanofibrous webs: enhanced water solubility, high thermal stability and antioxidant property of thymol. Food Res Int 106:280–290

    Article  CAS  PubMed  Google Scholar 

  64. Hasani S, Ojagh SM, Ghorbani M (2018) Nanoencapsulation of lemon essential oil in Chitosan-Hicap system. Part 1: study on its physical and structural characteristics. Int J Biolog Macromol 115:143–151

    Article  CAS  Google Scholar 

  65. Hasheminejad N, Khodaiyan F, Safari M (2019) Improving the antifungal activity of clove essential oil encapsulated by chitosan nanoparticles. Food Chem 275:113–122

    Article  CAS  PubMed  Google Scholar 

  66. da Rosa CG, de Oliveira Brisola Maciel MV, de Carvalho SM, de Melo APZ, Jummes B, da Silva T, Martelli SM, Villetti MA, Bertoldi FC, Barreto PLM (2015) Characterization and evaluation of physicochemical and antimicrobial properties of zein nanoparticles loaded with phenolics monoterpenes. Colloids Surf A 481:337–344

    Article  Google Scholar 

  67. Ponce Cevallos PA, Buera MP, Elizalde BE (2010) Encapsulation of cinnamon and thyme essential oils components (cinnamaldehyde and thymol) in β-cyclodextrin: effect of interactions with water on complex stability. J Food Eng 99:70–75

    Article  Google Scholar 

  68. Marcet I, Weng S, Sáez-Orviz S, Rendueles M, Díaz M (2018) Production and characterisation of biodegradable PLA nanoparticles loaded with thymol to improve its antimicrobial effect. J Food Eng 239:26–32

    Article  CAS  Google Scholar 

  69. Silva FTd, Cunha KFd, Fonseca LM, Antunes MD, Halal SLME, Fiorentini ÂM, Zavareze EdR, Dias ARG (2018) Action of ginger essential oil (Zingiber officinale) encapsulated in proteins ultrafine fibers on the antimicrobial control in situ. Int J Biol Macromol 118:107–115

    Article  CAS  PubMed  Google Scholar 

  70. Tavares L, Zapata Noreña CP (2019) Encapsulation of garlic extract using complex coacervation with whey protein isolate and chitosan as wall materials followed by spray drying. Food Hydrocolloids 89:360–369

    Article  CAS  Google Scholar 

  71. Zhang W, Liao LP, Zhao Y (2014) Incorporating microcapsules in smart coatings for corrosion protection of steel. Handbook of Smart Coatings for Materials Protection 287–306.

  72. Radünz M, do Santos Hackbart HC, Camargo TM, Nunes CFP, de Barros FAP, Dal Magro J, Filho PJS, Gandra EA, Radünz AL, da Rosa Zavareze E (2020) Antimicrobial potential of spray drying encapsulated thyme (Thymus vulgaris) essential oil on the conservation of hamburger-like meat products. Int J Food Microbiol 330:108696

    Article  PubMed  Google Scholar 

  73. Su H, Huang C, Liu Y, Kong S, Wang J, Huang H, Zhang B (2020) Preparation and characterization of cinnamomum essential oil–chitosan nanocomposites: physical, structural, and antioxidant activities. Processes 8:834

    Article  CAS  Google Scholar 

  74. Yuan C, Wang Y, Liu Y, Cui B (2019) Physicochemical characterization and antibacterial activity assessment of lavender essential oil encapsulated in hydroxypropyl-β-cyclodextrin. Indust Crop Prod 130:104–110

    Article  CAS  Google Scholar 

  75. Chetouani A, Elkolli M, Bounekhel M, Benachour D (2014) Synthesis and properties of novel hydrogels from oxidized pectin crosslinked gelatin for biomedical applications. Polym Bull 71:2303–2316

    Article  CAS  Google Scholar 

  76. Jain A, Thakur D, Ghoshal G, Katare OP, Shivhare US (2016) Characterization of microcapsulated β-carotene formed by complex coacervation using casein and gum tragacanth. Int J Biolog Macromol 87:101–113

    Article  CAS  Google Scholar 

  77. Zabot GL, Silva EK, Azevedo VM, Meireles MAA (2016) Replacing modified starch by inulin as prebiotic encapsulant matrix of lipophilic bioactive compounds. Food Res Int 85:26–35

    Article  CAS  PubMed  Google Scholar 

  78. Silva EK, Meireles MAA (2015) Influence of the degree of inulin polymerization on the ultrasound-assisted encapsulation of annatto seed oil. Carbohydr Polym 133:578–586

    Article  CAS  PubMed  Google Scholar 

  79. Meng J, Kang T-T, Wang H-F, Zhao B-B, Lu R-R (2018) Physicochemical properties of casein-dextran nanoparticles prepared by controlled dry and wet heating. Int J Biolog Macromol 107:2604–2610

    Article  CAS  Google Scholar 

  80. Volić M, Pajić-Lijaković I, Djordjević V, Knežević-Jugović Z, Pećinar I, Stevanović-Dajić Z, Veljović Đ, Hadnadjev M, Bugarski B (2018) Alginate/soy protein system for essential oil encapsulation with intestinal delivery. Carbohydr Polym 200:15–24

    Article  PubMed  Google Scholar 

  81. Belščak-Cvitanović A, Bušić A, Barišić L, Vrsaljko D, Karlović S, Špoljarić I, Vojvodić A, Mršić G, Komes D (2016) Emulsion templated microencapsulation of dandelion (Taraxacum officinale L.) polyphenols and β-carotene by ionotropic gelation of alginate and pectin. Food Hydrocolloids 57:139–152

    Article  Google Scholar 

  82. Hosseini SM, Hosseini H, Mohammadifar MA, Mortazavian AM, Mohammadi A, Khosravi-Darani K, Shojaee-Aliabadi S, Dehghan S, Khaksar R (2013) Incorporation of essential oil in alginate microparticles by multiple emulsion/ionic gelation process. Int J Biolog Macromol 62:582–588

    Article  CAS  Google Scholar 

  83. Dima C, Pătraşcu L, Cantaragiu A, Alexe P, Dima Ş (2016) The kinetics of the swelling process and the release mechanisms of Coriandrum sativum L. essential oil from chitosan/alginate/inulin microcapsules. Food Chem 195:39–48

    Article  CAS  PubMed  Google Scholar 

  84. Wusigale LL, Luo Y (2020) Casein and pectin: structures, interactions, and applications. Trends Food Sci Technol 97:391–403

    Article  CAS  Google Scholar 

  85. Luo Y, Pan K, Zhong Q (2015) Casein/pectin nanocomplexes as potential oral delivery vehicles. Int J Pharm 486:59–68

    Article  CAS  PubMed  Google Scholar 

  86. Patel N, Lalwani D, Gollmer S, Injeti E, Sari Y, Nesamony J (2016) Development and evaluation of a calcium alginate based oral ceftriaxone sodium formulation. Prog Biomater 5:117–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Dupont D, Tomé D (2020) Milk proteins: digestion and absorption in the gastrointestinal tract. In: Elsevier (ed). Milk proteins from expression to food, Third edition, 701–714

  88. Singh J, Kaur K, Kumar P (2018) Optimizing microencapsulation of α-tocopherol with pectin and sodium alginate. J Food Sci Technol 55:3625–3631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Rehman A, Ahmad T, Aadil RM, Spotti MJ, Bakry AM, Khan IM, Zhao L, Riaz T, Tong Q (2019) Pectin polymers as wall materials for the nano-encapsulation of bioactive compounds. Trends Food Sci Technol 90:35–46

    Article  CAS  Google Scholar 

  90. Kavousi HR, Fathi M, Goli SAH (2018) Novel cress seed mucilage and sodium caseinate microparticles for encapsulation of curcumin: an approach for controlled release. Food Bioprod Proc 110:126–135

    Article  CAS  Google Scholar 

  91. Fan J, Zhang H, Yi M, Liu F, Wang Z (2019) Temperature induced phase transformation and in vitro release kinetic study of dihydromyricetin-encapsulated lyotropic liquid crystal. J Molecul Liquid 274:690–698

    Article  CAS  Google Scholar 

  92. Gibis M, Ruedt C, Weiss J (2016) In vitro release of grape-seed polyphenols encapsulated from uncoated and chitosan-coated liposomes. Food Res Int 88:105–113

    Article  CAS  PubMed  Google Scholar 

  93. Dehcheshmeh MA, Fathi M (2019) Production of core-shell nanofibers from zein and tragacanth for encapsulation of saffron extract. Int J Biolog Macromol 122:272–279

    Article  CAS  Google Scholar 

  94. Turasan H, Sahin S, Sumnu G (2015) Encapsulation of rosemary essential oil. LWT 64:112–119

    Article  CAS  Google Scholar 

  95. Noori S, Zeynali F, Almasi H (2018) Antimicrobial and antioxidant efficiency of nanoemulsion-based edible coating containing ginger (Zingiber officinale) essential oil and its effect on safety and quality attributes of chicken breast fillets. Food Control 84:312–320

    Article  CAS  Google Scholar 

  96. Negrão-Murakami AN, Nunes GL, Pinto SS, Murakami FS, Amante ER, Petrus JCC, Prudêncio ES, Amboni RDMC (2017) Influence of DE-value of maltodextrin on the physicochemical properties, antioxidant activity, and storage stability of spray dried concentrated mate (Ilex paraguariensis A. St. Hil.). LWT 79:561–567

    Article  Google Scholar 

  97. Tsali A, Goula AM (2018) Valorization of grape pomace: encapsulation and storage stability of its phenolic extract. Powder Technol 340:194–207

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noudjoub Mebarki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mebarki, N., Ziane, H., Fazouane, F. et al. Microencapsulation of Thymus fontanesii extracts in pectin/casein: characterization, release behavior and storage stability. Iran Polym J 31, 301–316 (2022). https://doi.org/10.1007/s13726-021-00989-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-021-00989-8

Keywords

Navigation