Skip to main content

Advertisement

Log in

Effects of TiO2 and GO nanoparticles on the thermomechanical properties of bioactive poly-HEMA nanocomposites

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Bioactive polymeric nanocomposites are indispensable materials and have received great attention owing to their diverse applications in human body. In this study, a poly(hydroxyethyl methacrylate) (pHEMA) complex was prepared using hydroxyethyl methacrylate (HEMA) as a base material and trimethylolpropane trimethacrylate (TMPTA) and benzoyl peroxide (BPO) as cross-linking agents. The pHEMA nanocomposites were prepared by melt processing technique. In this process, a twin screw extruder machine was used. Twin screw extrusion is used extensively for mixing, compounding, or reacting polymeric materials. The flexibility of twin screw extrusion equipment allows this operation to be designed specifically for the formulation being processed. The nanocomposites of pHEMA/TiO2 and pHEMA/TiO2/GO were synthesized using pHEMA as a matrix with the addition of a small amounts of titanium oxide nanoparticles (TiO2 1 wt%) and graphene oxide (GO 0.1 wt%) as reinforcement materials. The thermomechanical study of pHEMA/TiO2 and pHEMA/TiO2/GO nanocomposites was carried out via thermogravimetric (TGA), differential scanning calorimetry (DSC), micro-indentation, micro-scratch, and FTIR analyses, and compression testing. The microstructural characterization of the nanocomposites was studied by FESEM and XRD analysis. Significant changes in microstructural behavior with improved thermomechanical properties were observed in pHEMA/TiO2 and pHEMA/TiO2/GO nanocomposites as compared to pure pHEMA. In this work, pure pHEMA and pHEMA/TiO2 and pHEMA/TiO2/GO nanocomposites were studied for dental applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Nelson JK (2010) Dielectric nanocomposite polymers. Springer, New York

    Book  Google Scholar 

  2. Koo JH (2006) Polymer nanocomposites: processing, characterization, and applications. McGraw-Hill, New York

    Google Scholar 

  3. Montheard J-P, Chatzopoulos M, Chappard D (1992) 2-Hydroxyethyl methacrylate (HEMA): chemical properties and applications in biomedical fields. J Macromol Sci Polym Rev 32:1–34

    Article  Google Scholar 

  4. Achilias DS, Siafaka PI (2017) Polymerization kinetics of poly (2-hydroxyethyl methacrylate) hydrogels and nanocomposite materials. Processes 5:21. https://doi.org/10.3390/pr5020021

    Article  CAS  Google Scholar 

  5. Kopperud HM, Kleven IS, Wellendorf H (2011) Identification and quantification of leachable substances from polymer-based orthodontic base-plate materials. Eur J Orthod 33:26–31

    Article  Google Scholar 

  6. Park J-G, Ye Q, Topp EM, Kostoryz EL, Wang Y, Kieweg SL, Spencer P (2008) Preparation and properties of novel dentin adhesives with esterase resistance. J Appl Polym Sci 107:3588–3597

    Article  CAS  Google Scholar 

  7. Yourtee DM, Smith RE, Russo KA, Burmaster S, Cannon JM, Eick JD, Kostoryz EL (2001) The stability of methacrylate biomaterials when enzyme challenged: kinetic and systematic evaluations. J Biomed Mater Res 57:522–531

    Article  CAS  Google Scholar 

  8. Schweikl H, Spagnuolo G, Schmalz G (2006) Genetic and cellular toxicology of dental resin monomers. J Dent Res 85:870–877

    Article  CAS  Google Scholar 

  9. Jung Y-J, Hyun H-K, Kim Y-J, Jang K-T (2009) Effect of collagenase and esterase on resin-dentin interface: a comparative study between a total-etch adhesive and a self-etch adhesive. Am J Dent 22:295–298

    PubMed  Google Scholar 

  10. Rayment EA, Dargaville TR, Shooter GK, George GA, Upton Z (2008) Attenuation of protease activity in chronic wound fluid with bisphosphonate-functionalized hydrogels. Biomaterials 29:1785–1795

    Article  CAS  Google Scholar 

  11. Schiraldi C, Agostino AD, Oliva A, Flamma F, De Rosa A, Apicella A, Aversa R, De Rosa M (2004) Development of hybrid materials based on hydroxyethylmethacrylate as supports for improving cell adhesion and proliferation. Biomater 25:3645–3653

    Article  CAS  Google Scholar 

  12. Bolbukh Y, Klonos P, Roumpos K, Chatzidogiannaki V, Tertykh V, Pissis P (2016) Glass transition and hydration properties of polyhydroxyethylmethacrylate filled with modified silica nanoparticles. J Therm Anal Calorim 25:1387–1398

    Article  Google Scholar 

  13. Al-Jawoosh S, Ireland A, Su B (2018) Fabrication and characterisation of a novel biomimetic anisotropic ceramic/polymer-infiltrated composite material. Dent Mater 34:994–1002

    Article  CAS  Google Scholar 

  14. Pyrzynski K, Nyszko G, Zaikov GE (2015) Chemical and structure modification of polymers. Apple Academic Press, New York

    Google Scholar 

  15. Madhumitha G, Fowsiya J, Roopan SM, Thakur VK (2018) Recent advances in starch–clay nanocomposites. Int J Polym Anal Char 23:331–345

    Article  CAS  Google Scholar 

  16. Salimian S, Zadhoush A, Mohammadi A (2018) A review on new mesostructured composite materials: part I. synthesis of polymer-mesoporous silica nanocomposite. J Reinf Plast Compos 37:441–459

    Article  CAS  Google Scholar 

  17. Biswas B, Chabri S, Sawai P, Mitra BC, Das K, Sinha A (2018) Effect of aluminum addition on the mechanical and thermal behavior of unsaturated polyester/jute composites. Adv Polym Technol 37:810–821

    Article  CAS  Google Scholar 

  18. Ojha S, Acharya SK, Raghavendra G (2015) Mechanical properties of natural carbon black reinforced polymer composites. J Appl Polym Sci 132:41211. https://doi.org/10.1002/app.41211

    Article  CAS  Google Scholar 

  19. Hussien B, Hashim A, Jewad A (2012) Electrical properties of polyvinylchloride-Zinc composite. Eur J Soc Sci 32:225–229

    Google Scholar 

  20. Fu X, Al-Jumaily AM, Ramos M, Chen Y-F (2018) Comprehensive analysis on the electrical behavior of highly stretchable carbon nanotubes/polymer composite through numerical simulation. J Mater Res 33:3398–3407

    Article  CAS  Google Scholar 

  21. Trommer K, Petzold C, Morgenstern B (2014) Processing and properties of carbon nanotube PVC composites. J Appl Chem. https://doi.org/10.1155/2014/307274

    Article  Google Scholar 

  22. Selvi J, Parthasarathy V, Mahalakshmi S, Anbarasan R, Daramola MO, Kumar PS (2020) Optical, electrical, mechanical, and thermal properties and non-isothermal decomposition behavior of poly(vinyl alcohol)–ZnO nanocomposites. Iran Polym J 29:411–422

    Article  CAS  Google Scholar 

  23. Polizos G, Tuncer E, Sauers I, James DR, Ellis AR, More KL (2010) Electrical and mechanical properties of titanium dioxide nanoparticle filled epoxy resin composites. AIP Conf Proc 1219:41–46

    Article  CAS  Google Scholar 

  24. Bayani M, Ehsani M, Khonakdar HA, Seyfi J, HosseinAbadi-Ghaeni MH (2017) An investigation of TiO2 nanoparticles effect on morphology, thermal, and mechanical properties of epoxy/silica composites. J Vinyl Addit Technol 23:E216–E221

    Article  CAS  Google Scholar 

  25. Casati R, Vedani M (2014) Metal matrix composites reinforced by nano-particles—a review. Metals 4:65–83

    Article  Google Scholar 

  26. Elashmawi IS, Alatawi NS, Elsayed NH (2017) Preparation and characterization of polymer nanocomposites based on PVDF/PVC doped with graphene nanoparticles. Res Phys 7:636–640

    Google Scholar 

  27. Ge Z, Yang L, Xiao F, Wu Y, Yu T, Chen J, Lin J, Zhang Y (2018) Graphene family nanomaterials: properties and potential applications in dentistry. Int J Biomater. https://doi.org/10.1155/2018/1539678

    Article  PubMed  PubMed Central  Google Scholar 

  28. Gómez-Navarro C, Weitz RT, Bittner AM, Scolari M, Mews A, Burghard M, Kern K (2007) Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett 7:3499–3503

    Article  Google Scholar 

  29. Mosalman S, Rashahmadi S, Hasanzadeh R (2017) The effect of TiO2 nanoparticles on mechanical properties of poly methyl methacrylate nanocomposites. Int J Eng Trans B Appl 30:807–813

    CAS  Google Scholar 

  30. Alamgir M, Nayak GC, Mallick A, Tiwari SK, Mondal S, Gupta M (2018) Processing of PMMA nanocomposites containing biocompatible GO and TiO2 nanoparticles. Mater Manuf Process 33:1291–1298

    Article  CAS  Google Scholar 

  31. Hatui G, Nayak GC, Udayabhanu G (2016) One pot solvothermal synthesis of sandwich-like Mg Al layered double hydroxide anchored reduced graphene oxide: an excellent electrode material for supercapacitor. Electrochim Acta 219:214–226

    Article  CAS  Google Scholar 

  32. Jarrar R, Mohsin MA, Haik Y (2012) Alteration of the mechanical and thermal properties of nylon 6/nylon 6,6 blends by nanoclay. J Appl Polym Sci 124:1880–1890

    Article  CAS  Google Scholar 

  33. Vargün E, Usanmaz A (2010) Degradation of poly(2-hydroxyethyl methacrylate) obtained by radiation in aqueous solution. J Macromol Sci A 47:882–891

    Article  Google Scholar 

  34. Vasile E, Pandele AM, Andronescu C, Selaru A, Dinescu S, Costache M, Hanganu A, Raicopol MD, Teodorescu M (2019) Hema-functionalized graphene oxide: a versatile nanofiller for poly (propylene fumarate)-based hybrid materials. Sci Rep 9:18685. https://doi.org/10.1038/s41598-019-55081-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sabet M, Soleimani H, Mohammadian E, Hosseini S (2020) Impact of inclusion of graphene oxide nanosheets on polypropylene thermal characteristics. Iran Polym J 29:1099–1112

    Article  CAS  Google Scholar 

  36. Mat Yazik MH, Sultan MTH, Shah AUM, Jawaid M, Mazlan N (2020) Effect of nanoclay content on the thermal, mechanical and shape memory properties of epoxy nanocomposites. Polym Bull 77:5913–5931

    Article  CAS  Google Scholar 

  37. Li X, Habibnejad Korayem A, Li C, Liu Y, He H, Sanjayan JG, Duan WH (2016) Incorporation of graphene oxide and silica fume into cement paste: a study of dispersion and compressive strength. Constr Build Mater 123:327–335

    Article  CAS  Google Scholar 

  38. Choi Y, Lee HS, Kwon D (2004) Analysis of sharp-tip-indentation load–depth curve for contact area determination taking into account pile-up and sink-in effects. J Mater Res 19:3307–3315

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research work was funded and supported by SERB, Department of Science and Technology, Govt. of India, under a research Grant (No. DST/SB/EMEQ/-020/2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashis Mallick.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alamgir, M., Nayak, G.C., Mallick, A. et al. Effects of TiO2 and GO nanoparticles on the thermomechanical properties of bioactive poly-HEMA nanocomposites. Iran Polym J 30, 1089–1099 (2021). https://doi.org/10.1007/s13726-021-00948-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-021-00948-3

Keywords

Navigation