Skip to main content
Log in

Effects of different molecular architectures in terms of comonomer content and composition distribution on the miscibility of cyclic olefin copolymer/polyolefin (COC/POE and COC/LLDPEB) blends

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

In this work, morphology and rheology of the blends of cyclic olefin copolymer (COC) with two types of crystalline polyolefins were investigated through a wide range of compositions. The used polyolefins had various plasticity, elasticity and viscoelastic behavior. Their molecular structures were similar but their molecular architectures were different in terms of comonomer content and composition distribution (i.e., a linear low-density polyethylene with 4 mol% of 1-butene comonomer (LLDPEB labeled as LLB) and nonuniform composition distribution and a polyolefin elastomer (POE) with 33 mol% of 1-butene comonomer and uniform composition distribution). Morphology of the COC/POE blends was droplet-matrix at low concentrations of the dispersed phase which was changed to co-continuous morphology at intermediate concentrations. Good compatibility and adhesion between phases were also observed. In COC/LLB blends, droplet-matrix morphology and good compatibility were observed between the two phases, except for compositions of 70/30 and 50/50, which exhibited continuous morphology and phase separation. The results of morphology and rheological data such as Cole–Cole plots and variations of viscosity versus composition revealed that these blends were immiscible. The interfacial interaction of the blend phases was investigated using rheological diagrams of variations of their complex viscosities, storage modulus versus frequency, relaxation time spectra and tan δ versus frequency. In addition, the interfacial tension was calculated using emulsion models. It was found that in the intermediate concentrations and COC-rich compounds, the interfacial interaction of the phases and form relaxation time of the dispersed particles of the COC/POE blends were higher than those of the COC/LLB blends, resulting in a further increase in elasticity. In blends with low COC content, the interfacial interaction of the phases and form relaxation time of the dispersed particles of the COC/LLB blends were higher than those of the COC/POE blends.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. \(\left( {\log G_{{\text{M}}}^{^{\prime}} = \varphi \log G_{{\text{A}}}^{^{\prime}} + \left( {1 - \varphi } \right)\log G_{{\text{B}}}^{^{\prime}} } \right)\)

References

  1. Lacroix C, Bousmina M, Carreau PJ, Favis BD, Michel A (1996) Properties of PETG/EVA blends: 1. Viscoelastic, morphological and interfacial properties. Polymer 37:2939–2947

    Article  CAS  Google Scholar 

  2. Hsu YC, Truss RW, Laycock B, Weir MP, Nicholson TM, Garvey CJ, Halley PJ (2017) The effect of comonomer concentration and distribution on the photo-oxidative degradation of linear low density polyethylene films. Polymer 119:66–75

    Article  CAS  Google Scholar 

  3. Adhikari R, Godehardt R, Lebek W, Frangov S, Michler GH, Radusch J, Baltá Calleja FJ (2005) Morphology and micromechanical properties of ethylene/1-octene copolymers and their blends with high density polyethylene. Polym Adv Technol 16:156–166

    Article  CAS  Google Scholar 

  4. Liu MO, Lin H-F, Yang M-C, Lai M-J, Chang CC, Shiao P-L, Chen I-M, Chen J-Y (2007) Thermal, dynamic mechanical and rheological properties of metallocene-catalyzed cycloolefin copolymers (mCOCs) with high glass transition temperature. Mater Lett 61:457–462

    Article  CAS  Google Scholar 

  5. Durmus A, Alanalp MB, Aydin I (2018) Investigation of morphological, rheological, and mechanical properties of cyclic olefin copolymer/poly(ethylene-co-vinyl acetate) blend films. J Plast Film Sheet 34:140–159

    Article  CAS  Google Scholar 

  6. Chen Y, Zou H, Cao Y, Liang M (2014) Melt miscibility of HDPE/UHMWPE, LDPE/UHMWPE, and LLDPE/UHMWPE blends detected by dynamic rheometer. Polym Sci Series A 56:630–639

    Article  CAS  Google Scholar 

  7. Dorigato A, Pegoretti A, Fambri L, Lonardi C, Šlouf M, Kolařik J (2011) Linear low density polyethylene/cycloolefin copolymer blends. Express Polym Lett 5:23–33

    Article  CAS  Google Scholar 

  8. Malpass DB (2010) Introduction to industrial polyethylene: properties, catalysts, and processes. Scrivener Publishing LLC

    Book  Google Scholar 

  9. Lamnawar K, Vion-Loisel F, Maazouz A (2010) Rheological, morphological, and heat seal properties of linear low density polyethylene and cyclo olefine copolymer (LLDPE/COC) blends. J Appl Polym Sci 116:2015–2022

    CAS  Google Scholar 

  10. Ostafinska A, Vackova T, Slouf M (2018) Strong synergistic improvement of mechanical properties in HDPE/COC blends with fibrillar morphology. Polym Eng Sci 58:1955–1964

    Article  CAS  Google Scholar 

  11. Adhikari R, Godehardt R, Lebek W, Michler GH (2007) Blends of high density polyethylene and ethylene/1-octene copolymers: Structure and properties. J Appl Polym Sci 103:1887–1893

    Article  CAS  Google Scholar 

  12. Kim J, Kwon H, Choi Y, Lee K, Song E, Hong D, Kim W, Kim S (2015) Ethylene/1-hexene or ethylene/1-butene copolymer having excellent processibility and environmetal stress crack resistance. US Patent 9732172B2

  13. Morshedian J, Moballegh L, Azizi H, Degheh H (2020) Effects of Nano-SiC on silane grafting and curing of polyolefin elastomer: mixing order, physical, and mechanical properties. J Vinyl Addit Technol 26:244–252

    Article  CAS  Google Scholar 

  14. Mileva D, Radusch HJ, Betchev C (2007) Study on the phase behavior of high density polyethylene - ethylene octene copolymer blends. Macromol Mater Eng 292:319–328

    Article  CAS  Google Scholar 

  15. Khonakdar HA, Jafari SH, Hesabi MN (2015) Miscibility analysis, viscoelastic properties and morphology of cyclic olefin copolymer/polyolefin elastomer (COC/POE) blends. Compos Part B Eng 69:111–119

    Article  CAS  Google Scholar 

  16. Doshev P, Tomova D, Wutzler A, Radusch HJ (2005) Morphology and mechanical properties of reactive and non-reactive COC/EOC blends. J Polym Eng 25:375–392

    Article  CAS  Google Scholar 

  17. Jafari SH, Khonakdar HA, Tarameshlou M, Saeb MR (2016) Comparative study on tensile properties and microstructure development in elastomer-modified cyclic olefin copolymer. J Vinyl Addit Technol 22:222–230

    Article  CAS  Google Scholar 

  18. Hussein IA (2005) Melt miscibility and mechanical properties of metallocene linear low-density polyethylene blends with high-density polyethylene: influence of comonomer type. Polym Int 54:1330–1336

    Article  CAS  Google Scholar 

  19. Guimarães MJOC, Coutinho FMB, Rocha MCG, Farahe M, Bretase RES (2003) Effect of molecular weight and long chain branching of metallocene elastomers on the properties of high density polyethylene blends. Polym Test 22:843–847

    Article  CAS  Google Scholar 

  20. Kontopoulou M, Wang W, Gopakumar TG, Cheung C (2003) Effect of composition and comonomer type on the rheology, morphology and properties of ethylene-α-olefin copolymer/polypropylene blends. Polymer 44:7495–7504

    Article  CAS  Google Scholar 

  21. Simpson DM, Vaughan GA (2001) Ethylene polymers, LLDPE. In: Encyclopedia of polymer science and technology. Wiley https://doi.org/10.1002/0471440264.pst122

  22. Hussein IA (2003) Influence of composition distribution and branch content on the miscibility of m-LLDPE and HDPE blends: rheological investigation. Macromolecules 36:2024–2031

    Article  CAS  Google Scholar 

  23. Hussein IA (2004) Implications of melt compatibility/incompatibility on thermal and mechanical properties of metallocene and Ziegler-Natta linear low density polyethylene (LLDPE) blends with high density polyethylene (HDPE): influence of composition distribution and branch. Polym Int 53:1327–1335

    Article  CAS  Google Scholar 

  24. Salehiyan R, Ray SS, Stadler FJ, Ojijo V (2018) Rheology-microstructure relationships in melt-processed polylactide/poly(vinylidene fluoride) blends. Materials (Basel) 11:2450. https://doi.org/10.3390/ma11122450

    Article  CAS  Google Scholar 

  25. Cui L, Zhou Z, Zhang Y, Zhang X, Zhou W (2007) Rheological behavior of polypropylene/novolac blends. J Appl Polym Sci 106:811–816

    Article  CAS  Google Scholar 

  26. Pimbert S (2003) Evaluation of the fractionated crystallization of isotactic polypropylene and high density polyethylenes in their blends with cycloolefin copolymers. Macromol Symp 203:277–284

    Article  CAS  Google Scholar 

  27. Lee JK, Han CD (1999) Evolution of polymer blend morphology during compounding in an internal mixer. Polymer 40:6277–6296

    Article  CAS  Google Scholar 

  28. Jafari SH, Hesabi MN, Khonakdar HA, Asl-Rahimi M (2011) Correlation of rheology and morphology and estimation of interfacial tension of immiscible COC/EVA blends. J Polym Res 18:821–831

    Article  CAS  Google Scholar 

  29. Shahbazi K, Razavi Aghjeh MK, Abbasi F, Partovi Meran M, Mehrabi Mazidi M (2012) Rheology, morphology and tensile properties of reactive compatibilized polyethylene/polystyrene blends via Friedel-Crafts alkylation reaction. Polym Bull 69:241–259

    Article  CAS  Google Scholar 

  30. Utracki LA, Kanial MR (1982) Melt rheology of polymer blends. Polym Eng Sci 22:96–114

    Article  Google Scholar 

  31. Stahl PO, Sederel WL (1996) Polymer blends. Wiley-Inter Science

    Google Scholar 

  32. Moly KA, Oommen Z, Bhagawan SS, Groeninckx G, Thomas S (2002) Melt rheology and morphology of LLDPE/EVA blends: effect of blend ratio, compatibilization, and dynamic crosslinking. J Appl Polym Sci 86:3210–3225

    Article  CAS  Google Scholar 

  33. Isayev A, Palsule S (2011) Encyclopedia of polymer blends, vol. 2: processing. Wiely-VCH Verlag CmbH

    Book  Google Scholar 

  34. Grizzuti N, Buonocore G, Iorio G (2000) Viscous behavior and mixing rules for an immiscible model polymer blend. J Rheol 44:149–164

    Article  CAS  Google Scholar 

  35. Graebling D, Muller R, Palierne JF (1993) Linear viscoelastic behavior of some incompatible polymer blends in the melt. Interpretation of data with a model of emulsion of viscoelastic liquids. Macromolecules 26:320–329

    Article  CAS  Google Scholar 

  36. Lacroix C, Grmela M, Carreau PJ (1998) Relationships between rheology and morphology for immiscible molten blends of polypropylene and ethylene copolymers under shear flow. J Rheol 42:41–62

    Article  CAS  Google Scholar 

  37. Jozaghkar MR, Jahani Y, Arabi H, Ziaee F (2018) Preparation and assessment of phase morphology, rheological properties, and thermal behavior of low-density polyethylene/polyhexene-1 blends. Polym Plast Technol Eng 57:757–765

    Article  CAS  Google Scholar 

  38. Palierne JF (1990) Linear rheology of viscoelastic emulsions with interfacial tension. Rheol Acta 29:204–214

    Article  CAS  Google Scholar 

  39. Galloway JA, Macosko CW (2004) Comparison of methods for the detection of cocontinuity in poly(ethylene oxide)/polystyrene blends. Polym Eng Sci 44:714–727

    Article  CAS  Google Scholar 

  40. Hernández-Alamilla M, Valadez-Gonzalez A (2016) The effect of two commercial melt strength enhancer additives on the thermal, rheological and morphological properties of polylactide. J Polym Eng 36:31–41

    Article  CAS  Google Scholar 

  41. Mehrabi Mazidi M, Razavi Aghjeh MK (2015) Effects of blend composition and compatibilization on the melt rheology and phase morphology of binary and ternary PP/PA6/EPDM blends. Polym Bull 72:1975–2000

    Article  CAS  Google Scholar 

  42. Bonilla-Blancas AE, Romero-Ibarra IC, Vazquez-Arenas J, Sanchez-Solis A, Manero O, Alvarez-Ramirez J (2019) Molecular interactions arising in polyethylene-bentonite nanocomposites. J Appl Polym Sci 136:1–9

    Article  CAS  Google Scholar 

  43. Li R, Yu W, Zhou C (2006) Phase behavior and its viscoelastic responses of poly(methyl methacrylate) and poly(styrene-co-maleic anhydride) blend systems. Polym Bull 56:455–466

    Article  CAS  Google Scholar 

  44. Madbouly SA, Ougizawa T (2002) Binary miscible blends of poly(methyl methacrylate)/poly(α-methyl styrene-co-acrylonitrile): I. Rheological behavior. J Macromol Sci Phys 41B:255–269

    Article  Google Scholar 

  45. Yang Z, Peng H, Wang W, Liu T (2010) Crystallization behavior of poly(ε-caprolactone)/layered double hydroxide nanocomposites. J Appl Polym Sci 116:2658–2667

    CAS  Google Scholar 

  46. Hussein IA, Williams MC (2004) Rheological study of the influence of branch content on the miscibility of octene m-LLDPE and ZN-LLDPE in LDPE. Polym Eng Sci 44:660–672

    Article  CAS  Google Scholar 

  47. Nandan B, Kandpal LD, Mathur GN (2004) Poly(ether ether ketone)/poly(aryl ether sulfone) blends: melt rheological behavior. J Polym Sci B Polym Phys 42:1548–1563

    Article  CAS  Google Scholar 

  48. Hsieh TT, Tiu C, Hsieh KH, Simon GP (2000) Characterization of thermotropic liquid crystalline polyester/polycarbonate blends: miscibility, rheology, and free volume behavior. J Appl Polym Sci 77:2319–2330

    Article  CAS  Google Scholar 

  49. Calvão PS, Yee M, Demarquette NR (2005) Effect of composition on the linear viscoelastic behavior and morphology of PMMA/PS and PMMA/PP blends. Polymer 46:2610–2620

    Article  CAS  Google Scholar 

  50. Souza AMC, Demarquette NR (2002) Influence of composition on the linear viscoelastic behavior and morphology of PP/HDPE blends. Polymer 43:1313–1321

    Article  CAS  Google Scholar 

  51. Ajji A, Choplin L, Prud’Homme RE (1991) Rheology of polystyrene/poly(vinyl methyl ether)blends near the phase transition. J Polym Sci B Polym Phys 29:1573–1578

    Article  CAS  Google Scholar 

  52. Codou A, Anstey A, Misra M, Mohanty AK (2018) Novel compatibilized nylon-based ternary blends with polypropylene and poly(lactic acid): morphology evolution and rheological behaviour. RSC Adv 8:15709–15724

    Article  CAS  Google Scholar 

  53. Chen Y, Zou H, Liang M, Liu P (2013) Rheological, thermal, and morphological properties of low-density polyethylene/ultra-high-molecular-weight polyethylene and linear low-density polyethylene/ultra-high-molecular-weight polyethylene blends. J Appl Polym Sci 129:945–953

    Article  CAS  Google Scholar 

  54. Chopra D, Kontopoulou M, Vlassopoulos D, Hatzikiriakos SG (2002) Effect of maleic anhydride content on the rheology and phase behavior of poly(styrene-co-maleic anhydride)/poly(methyl methacrylate) blends. Rheol Acta 41:10–24

    Article  CAS  Google Scholar 

  55. Chen ZK, Huang HX, Xu LQ (2012) Effects of component viscosities and dispersed phase volume fraction on relaxation behavior for polymer blends, 70th Ann Tech Conf Soci Plast Eng, Orlando, Florida, USA, 2–4 April. ANTEC Proc 1:39–43

    CAS  Google Scholar 

  56. Lacroix C, Aressy M, Carreau PJ (1997) Linear viscoelastic behavior of molten polymer blends: a comparative study of the Palierne and Lee and Park models. Rheol Acta 36:416–428

    Article  CAS  Google Scholar 

  57. Mortazavi S, Ghasemi I, Oromiehie A (2014) Morphological and rheological properties of (low-density polyethylene)/thermoplastic starch blend: investigation of the role of high elastic network. J Vinyl Addit Technol 20:250–259

    Article  CAS  Google Scholar 

  58. Bousmina M (1999) Rheology of polymer blends: linear model for viscoelastic emulsions. Rheol Acta 38:73–83

    Article  CAS  Google Scholar 

  59. Sengers WGF, Sengupta P, Noordermeer JWM, Picken SJ, Gotsis AD (2004) Linear viscoelastic properties of olefinic thermoplastic elastomer blends: melt state properties. Polymer 45:8881–8891

    Article  CAS  Google Scholar 

  60. Shi D, Hu GH, Ke Z, Li RKY, Yin J (2006) Relaxation behavior of polymer blends with complex morphologies: palierne emulsion model for uncompatibilized and compatibilized PP/PA6 blends. Polymer 47:4659–4666

    Article  CAS  Google Scholar 

  61. Van Hemelrijck E, Van Puyvelde P, Velankar S, Macosko CW, Moldenaers P (2004) Interfacial elasticity and coalescence suppression in compatibilized polymer blends. J Rheol 48:143–158

    Article  CAS  Google Scholar 

  62. Sarathchandran C (2020). In: Thomas S, Sarathchandran C, Chandran N (eds) Rheology of polymer blends and nanocomposites: theory, modelling and applications. Elsevier

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Karrabi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shamsoddini-Zarch, F., Karrabi, M. & Jahani, Y. Effects of different molecular architectures in terms of comonomer content and composition distribution on the miscibility of cyclic olefin copolymer/polyolefin (COC/POE and COC/LLDPEB) blends. Iran Polym J 30, 593–612 (2021). https://doi.org/10.1007/s13726-021-00914-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-021-00914-z

Keywords

Navigation