Skip to main content
Log in

Synthesis, characterization, optical, morphological, and antioxidant properties of oligo(2-ethoxy-6-(((2-hydroxyphenyl)imino)methyl)phenol) obtained by oxidative polycondensation

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

A newly designed oligo-Schiff-base was prepared and characterized to investigate its optical and morphological response and antioxidant activity. We first clarified the synthesis of 2-ethoxy-6-(((2-hydroxyphenyl)imino)methyl)phenol (EHPIMP) from the condensation reaction of 3-ethoxy-2-hydroxybenzaldehyde with 2-aminophenol. The subsequent oxidative polycondensation process yielded the target oligo(2-ethoxy-6-(((2-hydroxyphenyl)imino)-methyl)phenol), oligo (EHPIMP). The structural elucidation of oligo (EHPIMP) was performed by 1H, 13C NMR, TGA, FTIR and GPC systems. The optical properties of the EHPIMP and the oligo (EHPIMP)’s thin films were compared mainly with UV–Vis spectroscopy. Corresponding band gap (Eg) values of the EHPIMP and the oligo (EHPIMP) films were obtained as 2.224 and 1.404 eV, respectively. 2D and 3D surface images of films were analyzed with atomic force microscopy. In the AFM results, the surface roughness values and the average roughness were attained to be 8.28 nm and 46.63 nm for EHPIMP and the oligo (EHPIMP)’s thin films, respectively. Furthermore, the antioxidant activities were investigated using in vitro FRAP, CUPRAC, DPPH, and ABTS methods. The obtained data demonstrated that EHPIMP and oligo (EHPIMP) had effective reducing antioxidant potentials and radical scavenging activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig.3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Grigoras M, Catanescu CO (2004) Imine polymers and polymers. J Macromol Sci Part C Polym Rev 44:131–173

    Google Scholar 

  2. Cantón-Díaz AM, Muñoz-Flores BM, Moggio I, Arias E, De León A, García-López MC, Santillán R, Ochoa ME, Jiménez-Pérez VM (2018) One-pot microwave-assisted synthesis of organotin Schiff bases: an optical and electrochemical study towards their effects in organic solar cells. N J Chem 42:14586–14596

    Google Scholar 

  3. Mahadevi P, Sumathi S (2020) Mini review on the performance of Schiff base and their metal complexes as photosensitizers in dye-sensitized solar cells. Synth Commun 50:2237–2249

    CAS  Google Scholar 

  4. Wang Y, Ye W, Yang X, Rezaee E, Shan H, Yang S, Cai S, Jia-Hong Pan JH, Xu J, Xu ZX (2020) Hole transport layers based on metal Schiff base complexes in perovskite solar cells. Synth Metal 259:116248

    CAS  Google Scholar 

  5. Bhatt KD, Upadhyay SV (2020) Review on Schiff base: a Scrupulous binding detector for metal ions. Org Chem Plus 1:29–33

    Google Scholar 

  6. Kaya I, Ayten B, Şenol D (2018) Syntheses of poly(phenoxy-imine)s anchored with carboxyl group: characterization and photovoltaic studies. Opt Mater 7:421–431

    Google Scholar 

  7. Shaalan N, Laftah N, El-Hiti GA, Alotaibi MH, Muslih R, Ahmed DS, Yousif E (2018) Poly(vinyl chloride) photostabilization in the presence of Schiff bases containing a thiadiazole moiety. Molecules 23:913

    PubMed Central  Google Scholar 

  8. Ibrahim EMM, Abdel-Rahman LH, Abudief AM, Hamdan SK (2018) The electric and thermoelectric properties of Cu(II)-Schiff base nano-complexes. Phys Scripta 93:055801

    Google Scholar 

  9. Zhang J, Xu L, Wong WY (2018) Energy materials based on metal Schiff base complexes. Coord Chem Rev 355:180–198

    CAS  Google Scholar 

  10. Shokohi-Pour Z, Chiniforoshan H, Sabzalian MR, Esmaeili SA (2018) Cobalt (II) complex with novel unsymmetrical tetradentate Schiff base (ON) ligand: in vitro cytotoxicity studies of complex, interaction with DNA/protein, molecular docking studies, and antibacterial activity. J Biomol Struct Dyn 36:532–549

    CAS  PubMed  Google Scholar 

  11. Kamaci M, Kaya I (2018) Melamine-based poly(azomethine) hydrogels: mechanical, biodegradability, drug loading and antibacterial properties. Eur Polym J 108:107–115

    CAS  Google Scholar 

  12. Petrova P, Chochkova M, Veleva O, Karadjov M (2020) Schiff bases chelate sorbents for seperation and concentration of Pt from sea water and spent automotive catalysts. J Chem Tech Metall 55:691–697

    CAS  Google Scholar 

  13. Fernández N, Sánchez-Fontecoba P, Castillo-Martínez E, Carretero-González J, Rojo T, Armand M (2018) Polymeric redox-active electrodes for sodium-ion batteries. Chemsuschem 11:311–319

    PubMed  Google Scholar 

  14. Channa AM, Memon SQ, Khuhawar MY, Baytak S (2020) Synthesis of trifluoroacetylacetone resin through Schiff’s base reaction for treatment of cadmium-contaminated water. Arab J Sci Eng 45:4765–4772

    CAS  Google Scholar 

  15. Ikemura K, Kadoma Y, Endo T (2011) A review of the developments of self-etching primers and adhesives—effects of acidic adhesive monomers and polymerization initiators on bonding to ground, smear layer-covered teeth. Dent Mater J 30:769–789

    CAS  PubMed  Google Scholar 

  16. Kumar K-G, John K-S (2006) Complexation and ion removal studies of a polystyrene anchored Schiff base. React Funct Polym 66:1427–1433

    CAS  Google Scholar 

  17. Hasnaoui A, Idouhli R, Nayad A, Ouahine H, Khadiri ME, Abouelfida A, Elfirdoussi L, Ali MA (2020) Di-nuclear water-soluble oxovanadium (V) Schiff base complexes: electrochemical properties and catalytic oxidation. Inorg Chem Commun 119:108134

    CAS  Google Scholar 

  18. Xue J, Uchida S, Rand BP, Forrest SR (2004) Asymmetric tandem organic photovoltaic cells with hybrid planar-mixed molecular heterojunctions. Appl Phys Lett 85:5757–5759

    CAS  Google Scholar 

  19. Yang Z, Moffa M, Liu Y, Li H, Persano L, Camposeo A, Saija R, Antonia Latì M, Maragò OM, Pisignano D, Nam CY, Zussman E, Rafailovich M (2018) Electrospun conjugated polymer/fullerene hybrid fibers: photoactive blends, conductivity through tunneling-AFM, light scattering, and perspective for their use in bulk-heterojunction organic solar cells. J Phys Chem C 122:3058–3067

    CAS  Google Scholar 

  20. Hindson J-C, Ulgut B, Friend R-H, Greenham N-C, Norder B, Kotlewski A, Dingemans T-J (2010) All-aromatic liquid crystal triphenylamine-based poly(azomethine)s as hole transport materials for opto-electronic applications. J Mater Chem 20:937–944

    CAS  Google Scholar 

  21. Bucella SG, Luzio A, Gann E, Thomsen L, McNeill CR, Pace G, Perinot A, Chen Z, Facchetti A, Caironi M (2015) Macroscopic and high-throughput printing of aligned nanostructured polymer semiconductors for MHz large-area electronics. Nat Commun 6:1–10

    Google Scholar 

  22. Erdoğan E, Kundakçı M (2019) Influence of substrate and substrate temperature on the structural, optical and surface properties of InGaN thin films prepared by RFMS method. Microelectron Eng 207:15–18

    Google Scholar 

  23. Erdoğan E, Kundakçı M (2019) Changes of the physical properties of sputtered InGaN thin films under small nitrogen gas flow variations. J Electron Mater 48:2924–2931

    Google Scholar 

  24. Martin BD (2017) U.S. Patent No. 9,738,609. Washington DC: U.S. Patent and Trademark Office

  25. Chénais S, Forget S (2012) Recent advances in solid-state organic lasers. Polym Int 61:390–406

    Google Scholar 

  26. Hide F et al (1996) Semiconducting polymers: a new class of solid-state laser materials. Science 273:1833–1836

    CAS  Google Scholar 

  27. Kamacı M, Kaya İ (2016) New low-band gap polyurethanes containing azomethine bonding: photophysical, electrochemical, thermal and morphological properties. J Taiwan Inst Chem Eng 59:536–546

    Google Scholar 

  28. Davy NC, Sezen-Edmonds M, Gao J, Lin X, Liu A, Yao N, Kahn A, Loo YL (2017) Pairing of near-ultraviolet solar cells with electrochromic windows for smart management of the solar spectrum. Nat Energy 2:1–11

    Google Scholar 

  29. Chen Q, Ye F, Lai J, Dai P, Lu S, Ma C, Chen L (2017) Energy band alignment in operando inverted structure P3HT:PCBM organic solar cells. Nano Energy 40:454–461

    CAS  Google Scholar 

  30. Sandanayaka AS, Matsushima T, Bencheikh F, Yoshida K, Inoue M, Fujihara T, Goushi K, Ribierre JC, Adachi C (2017) Toward continuous-wave operation of organic semiconductor lasers. Sci Adv 3:e1602570

    PubMed  PubMed Central  Google Scholar 

  31. Zhang CH, Yu PP, Tan WY, Luo D, Wang LP, Xia Y, Liu CC, Cao Y (2019) An easily and environmentally friendly accessible small-molecule acetylenic donor for organic solar cells. Dye Pigment 160:983–988

    CAS  Google Scholar 

  32. Wang H, Wu J, Zhang Y, Song J, Chen L, Xiao Y, Qu J, Wong WY (2020) Achieving efficient green-solvent-processed organic solar cells by employing ortho-ortho perylene diimide dimer. Organ Electron 83:105732

    CAS  Google Scholar 

  33. Wu C, Kim TW, Guo T, Li F (2017) Wearable ultra-lightweight solar textiles based on transparent electronic fabrics. Nano Energy 32:367–373

    CAS  Google Scholar 

  34. Ramanujam PS, Hvilsted S, Ujhelyi F, Koppa P (2001) Physics and technology of optical storage in polymer thin films. Synth Met 124:145–150

    CAS  Google Scholar 

  35. Boyle AJ, Weems AC, Hasan SM, Nash LD, Monroe MBB, Maitland DJ (2016) Solvent stimulated actuation of polyurethane-based shape memory polymer foams using dimethyl sulfoxide and ethanol. Smart Mater Struct 25:075014

    PubMed  PubMed Central  Google Scholar 

  36. Yiğit B, Yiğit M, Taslimi P, Gök Y, Gülçin İ (2018) Schiff bases and their amines: synthesis and discovery of carbonic anhydrase and acetylcholinesterase enzymes inhibitors. Arch Pharm 351:1800146

    Google Scholar 

  37. Shanty AA, Mohanan PV (2018) Heterocyclic Schiff bases as non toxic antioxidants: solvent effect, structure activity relationship and mechanism of action. Spectrochim Acta Part A Mol Biomol Spectrsc 192:181–187

    CAS  Google Scholar 

  38. Orabi EA (2018) Tautomerism and antioxidant activity of some 4-acylpyrazolone-based Schiff bases: a theoretical study. RSC Adv 8:30842–30850

    CAS  Google Scholar 

  39. Hassib HB, Issa YM, Mohamed WS (2008) Electrical and thermal studies on some acetylacetone and benzoylacetone-arylhydrazones. J Therm Anal Calorim 92:775–782

    CAS  Google Scholar 

  40. Hassib H, Razik AA (2008) Dielectric properties and AC conduction mechanism for 5,7-dihydroxy-6-formyl-2-methylbenzo-pyran-4-one bis-Schiff base. Solid state Commun 147:345–349

    CAS  Google Scholar 

  41. Cetin A, Korkmaz A, Kaya E (2018) Synthesis, characterization and optical studies of conjugated Schiff base polymer containing thieno [3, 2-b] thiophene and 1, 2, 4-triazole groups. Opt Mater 76:75–80

    CAS  Google Scholar 

  42. Al-Sahlane TQ, Al-Amery MH (2018) Synthesis, characterization, antioxidant and anticancer human studies of new metal ion complexes of poly Schiff base derived from 4-aminoacetophenone with salicylaldehyde and 4-bromoaniline. Synthesis 11:489–493

    Google Scholar 

  43. Trávníček Z, Štarha P, Čajan M, Dvořák Z (2019) A half-sandwich TaV dichlorido complex containing an O, N, O′-tridentate Schiff base ligand: synthesis, crystal structure and in vitro cytotoxicity. Acta Crystallogr Sect C Struct Chem 75:248–254

    Google Scholar 

  44. Bursal E, Taslimi P, Gören AC, Gülçin İ (2020) Assessments of anticholinergic, antidiabetic, antioxidant activities and phenolic content of Stachys annua. Biocatal Agric Biotech 28:101711

    Google Scholar 

  45. Alsalim TA, Hadi JS, Ali ON, Abbo HS, Titinchi SJ (2013) Oxidation of benzoin catalyzed by oxovanadium (IV) Schiff base complexes. Chem Cent J 7:3

    PubMed  PubMed Central  Google Scholar 

  46. Mart H (2006) Oxidative polycondensation reaction. Des Monom Polym 9:551–588

    CAS  Google Scholar 

  47. Korkmaz A, Cetin A, Kaya E, Erdoğan E (2018) Novel polySchiff base containing naphthyl: synthesis, characterization, optical properties and surface morphology. J Polym Res 25:1–8

    CAS  Google Scholar 

  48. Cetin A, Korkmaz A, Bildirici I (2018) A novel poly-pyrazole-based thin film: synthesis, characterization, optical and morphological properties. Colloid Polym Sci 296:1249–1257

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Dastan T, Kocyigit UM, Dastan SD, Kilickaya PC, Taslimi P, Cevik O, Koparir M, Orek C, Gulcin I, Cetin A (2017) Investigation of acetylcholinesterase and mammalian DNA topoisomerases, carbonic anhydrase inhibition profiles, and cytotoxic activity of novel bis(α-aminoalkyl) phosphinic acid derivatives against human breast cancer. J Biochem Mol Toxic 31:e21971

    Google Scholar 

  50. Silinsin M, Bursal E (2018) UHPLC–MS/MS phenolic profiling and in vitro antioxidant activities of Inula graveolens (L.) Desf. Nat Prod Res 32:1467–1471

    CAS  PubMed  Google Scholar 

  51. Bener M, Şen FB, Apak R (2018) Heparin-stabilized gold nanoparticles-based CUPRAC colorimetric sensor for antioxidant capacity measurement. Talanta 187:148–155

    CAS  PubMed  Google Scholar 

  52. Taslimi P, Gulçin I (2018) Antioxidant and anticholinergic properties of olivetol. J Food Biochem 42:e12516

    Google Scholar 

  53. Bursal E, Boğa E (2018) Polyphenols analysed by UHPLC–ESI–MS/MS and antioxidant activities of molasses, acorn and leaves of oak (Quercus robur subsp. pedunculiflora). Prog Nutr 20:167–175

    Google Scholar 

  54. Kaya I, Yıldırım M, Avcı A (2010) Synthesis and characterization of fluorescent polyphenol species derived from methyl substituted aminopyridine based Schiff bases: the effect of substituent position on optical, electrical, electrochemical, and fluorescence properties. Synth Met 160:911–920

    CAS  Google Scholar 

  55. Oguchi T, Tawaki S, Uyuma H, Kobayashi S (1999) Soluble polyphenol. Macromol Rapid Commun 20:401–403

    CAS  Google Scholar 

  56. Ayyagari MS, Marx KA, Tripathy SK, Akkara JA, Kaplan DL (1995) Controlled free-radical polymerization of phenol derivatives by enzyme-catalyzed reactions in organic solvents. Macromolecules 28:5192–5197

    CAS  Google Scholar 

  57. Özbülbül A, Mart H, Tunçel M, Serin S (2006) A new soluble Schiff base polymer with a double azomethine group synthesized by oxidative polycondensation. Des Monom Polym 9:169–179

    Google Scholar 

  58. Ng HM, Saidi NM, Omar FS, Ramesh K, Ramesh S, Bashir S (2020) Thermogravimetric analysis of polymers. Encycl Polym Sci Technol. https://doi.org/10.1002/0471440264.pst667

    Article  Google Scholar 

  59. Kaya I, Kamacı M (2018) Synthesis, optical, and thermal properties of polyimides containing flexible ether linkage. J Appl Polym Sci 135:46573

    Google Scholar 

  60. Kamaci M, Kaya I (2014) Photophysical, electrochemical, thermal and morphological properties of polyurethanes containing azomethine bonding. J Macromol Sci Part A 51:805–819

    CAS  Google Scholar 

  61. Souri D, Sarfehjou M, Khezripour AR (2018) The effect of ambient temperature on the optical properties and crystalline quality of ZnSe and ZnSe: Cu NCs grown by rapid microwave irradiation. J Mater Sci Mater Electron 29:3411–3422

    CAS  Google Scholar 

  62. Cetin A, Korkmaz A, Erdoğan E, Kösemen A (2019) A study on synthesis, optical properties and surface morphological of novel conjugated poly-pyrazole films. Mater Chem Phys 222:37–44

    CAS  Google Scholar 

  63. Cetin A, Korkmaz A (2018) Synthesis, optical and morphological properties of novel pyrazole-based polyamide film. Opt Mater 85:79–85

    CAS  Google Scholar 

  64. Li G, Chang WH, Yang Y (2017) Low-bandgap conjugated polymers enabling solution-processable tandem solar cells. Nat Rev Mater 2:1–13

    Google Scholar 

  65. Wu W, Liu Y, Zhu D (2010) π-Conjugated molecules with fused rings for organic field-effect transistors: design, synthesis and applications. Chem Soc Rev 39:1489–1502

    CAS  PubMed  Google Scholar 

  66. Roncali J (1997) Synthetic principles for bandgap control in linear π-conjugated systems. Chem Rev 97:173–206

    CAS  PubMed  Google Scholar 

  67. Rasmussen S (2013) Low-bandgap polymers. In: Kobayashi S, Müllen K (eds) Encyclopedia of polymeric nanomaterials. Springer, Berlin, Heidelberg, pp 1155–1166

    Google Scholar 

  68. Hou J, Chen HY, Zhang S, Chen RI (2009) Synthesis of a low band gap polymer and its application in highly efficient polymer solar cells. J Am Chem Soc 131:15586–15587

    CAS  PubMed  Google Scholar 

  69. Wu CG, Hsieh CW, Chen DC, Chang SJ, Chen KY (2005) Low band gap-conjugated polymer derivatives. Synth Met 155:618–622

    CAS  Google Scholar 

  70. Kumar BR, Rao TS (2012) AFM studies on surface morphology, topography and texture of nanostructured zinc aluminum oxide thin films. Dig J Nanomat Biostruct 7:1881–1889

    Google Scholar 

  71. Raposo M, Ferreira Q, Ribeiro PA (2007) A guide for atomic force microscopy analysis of soft-condensed matter. Mod Res Educ Top Microsc 1:758–769

    Google Scholar 

  72. Derkowska-Zielinska B, Barwiolek M, Cassagne C, Boudebs G (2020) Nonlinear optical study of Schiff bases using Z-scan technique. Opt Laser Tech 124:105968

    CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Adem Korkmaz for her contribution in chemical synthesis.

Funding

The authors received no specific funding for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erman Erdoğan.

Ethics declarations

Conflict of interest

The authors confirm that this article content has no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaya, E., Erdoğan, E., Bursal, E. et al. Synthesis, characterization, optical, morphological, and antioxidant properties of oligo(2-ethoxy-6-(((2-hydroxyphenyl)imino)methyl)phenol) obtained by oxidative polycondensation. Iran Polym J 30, 285–295 (2021). https://doi.org/10.1007/s13726-020-00890-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-020-00890-w

Keywords

Navigation