Skip to main content
Log in

Morphology and drug release behavior of N-isopropylacrylamide/acrylic acid copolymer as stimuli-responsive nanogels

  • Original Paper
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Thermo- and pH-responsive N-isopropylacrylamide (NIPAM) nanogels can be obtained by copolymerization of acrylic acid (AA) comonomer through differential microemulsion polymerization. The effects of comonomer, cross-linker, surfactant contents, and water/oil ratio were preliminarily investigated by a 24 full factorial design in order to eliminate the insignificant parameters from the polymerization analysis. The smallest poly(NIPAM-co-AA) nanogel particles were 40 ± 1 nm in diameter with 6 wt% of solid content and 98% conversion without coagulation. The comonomer amounts controlled the morphologies and LCST of the poly(NIPAM-co-AA) nanogels. The hairy microgels of poly(NIPAM-co-AA) with a 10:90 mol ratio of AA/ NIPAM had a lower critical solution temperature (LCST) of 6 °C. With an increase in the AA amount to a 17 mol ratio, the LCST increased to 27 °C, resulting in core-shell morphology. The morphology of resultant nanogels was characterized by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy, and differential scanning calorimetry. Nuclear magnetic resonance spectroscopy was used to calculate the mole ratio of NIPAM and AA in resultant nanogels after dialysis. Both nanogel mole ratio and morphology effectively retained the cationic anti-cancer drug of methylene blue for several hours, an important basic requirement for a drug delivery system. Compared to core-shell microgels, a higher methylene blue release was obtained from the hairy microgels in simulated intestinal fluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Pelton RH, Chibanate P (1986) Preparation of aqueous latices with N-isopropylacrylamide. Colloids Surf 20:247–256

    Article  CAS  Google Scholar 

  2. Schild HG (1992) Poly(N-isopropylacrylamide): experiment, theory and application. Prog Polym Sci 17:163–249

    Article  CAS  Google Scholar 

  3. Shekhar S, Mukherjee M, Sen AK (2012) Synthesis, characterization and protein separation efficiency of N-isopropylacrylamide-co-N-tertiary butylacrylamide-co-acrylamide-based hydrogels. Iran Polym J 21:895–905

    Article  CAS  Google Scholar 

  4. Khan A, Othman MBH, Chang BP, Akil HM (2015) Preparation, physicochemical and stability studies of chitosan-PNIPAM based responsive microgels under various pH and temperature conditions. Iran Polym J24:317–328

    Article  Google Scholar 

  5. Krušić MK, Ilić M, Filipović J (2009) Swelling behaviour and paracetamol release from poly(N-isopropylacrylamide-itaconic acid) hydrogels. Polym Bull 63:197–211

    Article  Google Scholar 

  6. Khanal A, Bui MPN, Seo SS (2014) Microgel-encapsulated methylene blue for the treatment of breast cancer cells by photodynamic therapy. J Breast Cancer 17:18–24

    Article  Google Scholar 

  7. Taşdelen B, Kayaman-Apohan N, MisirlI Z, Güven O, Baysal BM (2005) Preparation, characterization, and drug-release properties of poly(N-isopropylacrylamide) microspheres having poly(itaconic acid) graft chains. J Appl Polym Sci 97:1115–1124

    Article  Google Scholar 

  8. Bera R, Dey A, Chakrabarty D (2015) Synthesis, characterization, and drug release study of acrylamide-co-itaconic acid based smart hydrogel. Polym Eng Sci 55:113–122

    Article  CAS  Google Scholar 

  9. Huo D, Li Y, Qian Q, Kobayashi T (2006) Temperature–pH sensitivity of bovine serum albumin protein-microgels based on cross-linked poly(N-isopropylacrylamide-co-acrylic acid). Colloids Surf B 50:36–42

    Article  CAS  Google Scholar 

  10. Lee CF, Lin CC, Chiu WY (2008) Thermosensitive and control release behavior of poly(N-isopropylacrylamide-co-acrylic acid) latex particles. J Polym Sci Pol Chem 46:5734–5741

    Article  CAS  Google Scholar 

  11. Zhang Q, Zha L, Ma J, Liang B (2009) A novel route to prepare pH- and temperature-sensitive nanogels via a semibatch process. J Colloid Interface Sci 330:330–336

    Article  CAS  Google Scholar 

  12. Khan A (2007) Preparation and characterization of N-isopropylacrylamide/acrylic acid copolymer core–shell microgel particles. J Colloid Interface Sci 313:697–704

    Article  CAS  Google Scholar 

  13. Xiong W, Gao X, Zhao Y, Xu H, Yang X (2011) The dual temperature/pH-sensitive multiphase behavior of poly(N-isopropylacrylamide-co-acrylic acid) microgels for potential application in in situ gelling system. Colloids Surf B 84:103–110

    Article  CAS  Google Scholar 

  14. Erbil C, Akpınar FD, Uyanık N (1999) Investigation of the thermal aggregation in aqueous poly(N-isopropylacrylamide-co-itaconic acid) solutions. Macromol Chem Phys 200:2448–2453

    Article  CAS  Google Scholar 

  15. Liu J, Pan Q (2006) Synthesis of nanosized poly(ethyl acrylate) particles via differential emulsion polymerization. J Appl Polym Sci 102:1609–1614

    Article  CAS  Google Scholar 

  16. Norakankorn C, Pan Q, Rempel GL, Kiatkamjornwong S (2009) Synthesis of poly(methyl methacrylate) nanoparticles initiated by azobisisobutyronitrile using a differential microemulsion polymerization technique. J Appl Polym Sci 113:375–382

    Article  CAS  Google Scholar 

  17. Norakankorn C, Pan Q, Rempel GL, Kiatkamjornwong S (2009) Factorial experimental design on synthesis of functional core/shell polymeric nanoparticles via differential microemulsion polymerization. J Appl Polym Sci 116:1291–1298

    Google Scholar 

  18. Kiatkamjornwong S, Phunchareon P (1999) Influence of reaction parameters on water absorption of neutralized poly(acrylic acid-co-acrylamide) synthesized by inverse suspension polymerization. J Appl Polym Sci 72:1349–1366

    Article  CAS  Google Scholar 

  19. Stuart BH (2004) Infrared spectroscopy: fundamentals and applications. Wiley, England

    Book  Google Scholar 

  20. Dey P, Rajora VK, Jassal M, Agrawal AK (2011) A novel route for synthesis of temperature responsive nanoparticles. J Appl Polym Sci 120:335–344

    Article  CAS  Google Scholar 

  21. Seddiki N, Aliouche D (2013) Synthesis, rheological behavior and swelling properties of copolymer hydrogels based on poly(N-isopropylacrylamide) with hydrophilic monomers. Bull Chem Soc Ethiop 27:447–457

    Google Scholar 

  22. Kawaguchi S, Kamata M, Ito K (1992) Infrared and ultraviolet spectroscopic studies on intramolecular hydrogen bonding of poly(itaconic acid). Polym J 24:1229–1238

    Article  CAS  Google Scholar 

  23. Wu X, Pelton RH, Hamielec AE, Woods DR, McPhee W (1994) The kinetics of poly(N-isopropylacrylamide) microgel latex formation. Colloid Polym Sci 272:467–477

    Article  CAS  Google Scholar 

  24. Chen S, Jiang L, Dan Y (2011) Preparation and thermal response behavior of poly(N-isopropylacrylamide-co-acrylic acid) microgels via soap-free emulsion polymerization based on AIBN initiator. J Appl Polym Sci 121:3322–3331

    Article  CAS  Google Scholar 

  25. He G, Pan Q, Rempel GL (2003) Synthesis of poly(methyl methacrylate) nanosize particles by differential microemulsion polymerization. Macromol Rapid Commun 24:585–588

    Article  CAS  Google Scholar 

  26. Taenghom T, Pan Q, Rempel GL, Kiatkamjornwong S (2013) Synthesis and characterization of nano-sized poly[(butyl acrylate)-co-(methyl methacrylate)-co-(methacrylic acid)] latex via differential microemulsion polymerization. Colloid Polym Sci 291:1365–1374

    Article  CAS  Google Scholar 

  27. Kuckling D, Adler H-JP, Arndt K-F, Ling L, Habicher WD (2000) Temperature and pH dependent solubility of novel poly(N-isopropylacrylamide)-copolymers. Macromol Chem Phys 201:273–280

    Article  CAS  Google Scholar 

  28. Henze M, Mädge D, Prucker O, Rühe J (2014) “Grafting through”: mechanistic aspects of radical polymerization reactions with surface-attached monomers. Macromolecules 47:2929–2937

    Article  CAS  Google Scholar 

  29. Kawaguchi H, Isono Y, Tsuji S (2002) Hairy particles prepared by living radical graft-polymerization. Macromol Symp 179:75–88

    Article  CAS  Google Scholar 

  30. Prasannan A, Tsai HC, Chen YS, Hsiue GH (2014) A thermally triggered in situ hydrogel from poly(acrylic acid-co-N-isopropylacrylamide) for controlled release of anti-glaucoma drugs. J Mater Chem B 2:1988–1997

    Article  CAS  Google Scholar 

  31. Yu R, Zheng S (2011) Poly(acrylic acid)-grafted poly(N-isopropylacrylamide) networks: preparation, characterization and hydrogel behavior. J BiomaterSci Polym Ed 22:2305–2324

    Article  CAS  Google Scholar 

  32. Lai EP, Wang YX, Wei Y, Li G (2016) Preparation of uniform-sized and dual stimuli-responsive microspheres of poly(N-isopropylacrylamide)/poly(acrylic acid) with semi-IPN structure by one-step method. Polymers 8:90. doi:10.3390/polym8030090

    Article  Google Scholar 

  33. Hirashima Y, Suzuki A (2007) Formation and destruction of hydrogen bonds in gels and in aqueous solutions of N-isopropylacrylamide and sodium acrylate observed by ATR-FTIR spectroscopy. J Colloid Interface Sci 312:14–20

    Article  CAS  Google Scholar 

  34. Keerl M, Smirnovas V, Winter R, Richtering W (2008) Copolymer microgels from mono- and disubstituted acrylamides: phase behavior and hydrogen bonds. Macromolecules 41:6830–6836

    Article  CAS  Google Scholar 

  35. Gao X, Cao Y, Song X, Zhang Z, Zhuang X, He C, Chen X (2014) Biodegradable, pH-responsive carboxymethyl cellulose/poly(acrylic acid) hydrogels for oral insulin delivery. Macromol Biosci 14:565–575

    Article  CAS  Google Scholar 

  36. Wang Q, Xie X, Zhang X, Zhang J, Wang A (2010) Preparation and swelling properties of pH-sensitive composite hydrogel beads based on chitosan-g-poly (acrylic acid)/vermiculite and sodium alginate for diclofenac controlled release. Int J Biol Macromol 46:356–362

    Article  CAS  Google Scholar 

  37. Amin M, Iqbal MC, Naveed A, Nadia H, Ishak A (2012) Synthesis and characterization of thermo- and pH-responsive bacterial cellulose/acrylic acid hydrogels for drug delivery. Carbohydr Polym 88:465–473

    Article  Google Scholar 

  38. Meng Z, Smith MH, Lyon LA (2009) Temperature-programmed synthesis of micron-sized multi-responsive microgels. Colloid Polym Sci 287:277–285

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are very grateful for the generous financial support from the Royal Golden Jubilee Ph.D. Program of the Thailand Research Fund under the Contract Grant Number PHD/0098/2549. Financial supports from the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Canada Foundation for Innovation (CFI) are highly appreciated. Research facilities provided by the Department of Imaging and Printing Technology, Faculty of Science, Chulalongkorn University, Thailand; and the Department of Chemical Engineering, University of Waterloo, Canada are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suda Kiatkamjornwong.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 869 kb)

Supplementary material 2 (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pruettiphap, M., Rempel, G.L., Pan, Q. et al. Morphology and drug release behavior of N-isopropylacrylamide/acrylic acid copolymer as stimuli-responsive nanogels. Iran Polym J 26, 957–969 (2017). https://doi.org/10.1007/s13726-017-0571-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-017-0571-8

Keywords

Navigation