Skip to main content
Log in

Synthesis and characterization of maleylated cellulose-g-polyacrylamide hydrogel using TiO2 nanoparticles under sunlight

  • Original Paper
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Graft polymerization onto the cellulose is one way to produce semisynthetic copolymers and semiconductors were hardly used as initiators. Maleylated cellulose (MC) with different degree of carboxyl groups was synthesized and degree of carboxyl groups was determined using titration method. Then the graft copolymers of acrylamide (AM) on MC were synthesized by titanium dioxide semiconductor photoinitiator in aqueous suspension under sunlight. The effect of different parameters, such as the degree of carboxyl groups, degassing of atmosphere, reactor type, light source, MC/AM ratio, and initiator concentration, was evaluated in the synthesis of graft copolymers. MC with a high degree of carboxyl groups about 2.8 mmol g−1 was selected for graft photopolymerization. Maximum monomer conversion (55%) for Maleylated cellulose-g-polyacrylamide (MC-g-PAM) was achieved with 0.5 mg TiO2, MC/AM = 0.056, argon atmosphere, sunlight source, and double quartz tube reactor. The maximum amount of equilibrium swelling (41 g g−1) was achieved for MC-g-PAM with 34% monomer conversion. The resulting graft copolymers were characterized by FT-IR, SEM, and TGA. Synthesis of MC-g-PAM using TiO2 nanoparticles (NPs) as the initiator was done successfully that shows the TiO2 NPs are useable in graft polymerization of acrylamide monomers onto the MC under sunlight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Gurdag G, Sarmad S (2013) In: Kalia S, Sabaa MW (eds) Polysaccharide based graft copolymers. Springer-Verlag, Berlin

    Google Scholar 

  2. Okieimen F (2003) Preparation, characterization, and properties of cellulose–polyacrylamide graft copolymers. J Appl Polym Sci 89:913–923

    Article  CAS  Google Scholar 

  3. Roy D, Guthrie J, Perrier S, Semsarilar M (2009) Cellulose modification by polymer grafting: a review. Chem Soc Rev 38:2046–2064

    Article  CAS  Google Scholar 

  4. Nurullaa I, Yimita M, Sawut A, Sun W (2014) Photopolymerisation and characterization of maleylatedcellulose-g-poly(acrylic acid) superabsorbent polymer. Carbohydr Polym 101:231–239

    Article  Google Scholar 

  5. Moghaddam PN, Avval ME, Fareghi AR (2014) Modification of cellulose by graft polymerization for use in drug delivery systems. Colloid Polym Sci 292:77–84

    Article  CAS  Google Scholar 

  6. Quajai S, Hodzic A, Shanks RA (2004) Morphological and grafting modification of natural cellulose fibers. J Appl Polym Sci 94:2456–2465

    Article  Google Scholar 

  7. Melo J, Silva Filho E, Santana S, Airoldi C (2009) Maleic anhydride incorporated onto cellulose and thermodynamics of cation-exchange process at the solid/liquid interface. Colloids Surf A 346:138–145

    Article  Google Scholar 

  8. Zhou Y, Jin Q, Hu K, Zhang Q, Ma T (2012) Heavy metal ions and organic dyes removal from water by cellulose modified with maleic anhydride. J Mater Sci 47:5019–5029

    Article  CAS  Google Scholar 

  9. Zohoriaan-Mehr MJ, Kabiri K (2008) Superabsorbent polymer materials: a review. Iran Polym J 17:451–477

    Google Scholar 

  10. Mohamadnia Z, Jamshidi A, Mobedi H, Ahmadi E, Zohuriaan-Mehr MJ (2007) Full natural hydrogel beads for controlled release of acetate and disodium phosphate derivatives of betamethasone. Iran Polym J 16(10):711–718

    CAS  Google Scholar 

  11. Roy J, Guthrie JT, Perrier S (2005) Graft polymerization: grafting poly (styrene) from cellulose via reversible addition—fragmentation chain transfer (RAFT) polymerization. Macromolecules 38:10363–10372

    Article  CAS  Google Scholar 

  12. Nada AM, Alkody MY, Fekry HM (2008) Synthesis and characterization of grafted cellulose for use in water and metal ions sorption. BioRes 3:46–59

    CAS  Google Scholar 

  13. Geacintov N, Stannett V, Abrahamson EW, Hermans JJ (1960) Grafting onto cellulose and cellulose derivatives using ultraviolet irradiation. J Appl Polym Sci 3:54–60

    Article  Google Scholar 

  14. Ojah R, Dolui SK (2006) Graft copolymerization of methyl methacrylate onto Bombyx mori initiated by semiconductor-based photocatalyst. Bioresour Technol 97:1529–1535

    Article  CAS  Google Scholar 

  15. Ni X, Dong C (2004) The photopolymerization and characterization of methyl methacrylate initiated by nanosized titanium dioxide. J Macromol Sci A Pure Appl Chem 41:547–563

    Article  Google Scholar 

  16. Ni X, Ye J, Dong C (2006) Kinetics studies of methyl methacrylate photopolymerization initiated by titanium dioxide semiconductor nanoparticles. J Photochem Photobio A Chem 181:19–27

    Article  CAS  Google Scholar 

  17. Popovic I, Katsikas L, Millerb U, Velickovic J, Weller H (1994) The homogeneous photopolymerization of methyl methacrylate by colloidal cadmium sulfide. Macromol Chem Phys 195(3):889–904

    Article  CAS  Google Scholar 

  18. Popovic I, Katsikas L, Weller H (1994) The photopolymerisation of methacrylic acid by colloidal semiconductors. Polym Bull 32(5–6):597–603

    Article  CAS  Google Scholar 

  19. Kazemi F, Mohammadnia Z, Kaboudin B, Gharibi H, Ahmadinejad E, Taran Z (2016) Synthesis, characterization and swelling behavior investigation of hydrogel based on AAm and AA using CdS nanorods as photocatalyst initiator under different irradiations. J Photochem Photobiol A Chem 330:102–109

    Article  CAS  Google Scholar 

  20. Wang X, Lu Q, Wang X, Joo J, Dahl M, Liu B, Gao C, Yin Y (2016) Photocatalytic surface-initiated polymerization on TiO2 toward well-defined composite nanostructures. ACS Appl Mater Interfaces 8(1):538–546

    Article  CAS  Google Scholar 

  21. Kazemi F, Mohamadnia Z, Kaboudin B, Karimi Z (2016) Photodegradation of methylene blue with a titanium dioxide/polyacrylamide photocatalyst under sunlight. J Appl Polym Sci 133:43386–43389

    Article  Google Scholar 

  22. Zhang D, Yang Y, Bao S, Wu Q, Wang Q (2013) Semiconductor nanoparticle-based hydrogels prepared via self-initiated polymerization under sunlight, even visible light. Sci Rep 3:1399

    Article  Google Scholar 

  23. Fortenberry DI, Pojman JA (2000) Solvent-free synthesis of polyacrylamide by frontal polymerization. J Polym Sci Part A Polym Chem 38:1129–1135

    Article  CAS  Google Scholar 

  24. Mukherjee D, Barghi S, Ray AK (2014) Preparation and characterization of the TiO2 immobilized polymeric photocatalyst for degradation of aspirin under UV and solar light. Processes 2:12–23

    Article  CAS  Google Scholar 

  25. Vero N, Hribernik S, Andreozzi P, Sfiligoj-Smole M (2009) Homogeneous self-cleaning coatings on cellulose materials derived from TIP/TiO2 P25. Fiber Polym 10:716–723

    Article  CAS  Google Scholar 

  26. Kale B, Wiener J, Militky J, Wang Y (2016) Coating of cellulose-TiO2 nanoparticles on cotton fabric for durable photocatalytic self-cleaning and stiffness. Carbohydr Polym 150:107–113

    Article  CAS  Google Scholar 

  27. Ramazani A, Morsali A, Ganjeie B, Kazemizadeh AR, Ahmadi E (2005) One-Pot Stereoselective synthesis of alkyl Z-2-[2-amino-4-oxo-1,3-selenazol-5(4H)-yliden] acetates. Phosphorus Sulfur Silicon Relat Elem 180:2439–2442

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahra Mohamadnia.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S 1 TEM image of Titanium nano particles (Degussa P25) (DOCX 58 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazemi, F., Mohamadnia, Z., Kaboudin, B. et al. Synthesis and characterization of maleylated cellulose-g-polyacrylamide hydrogel using TiO2 nanoparticles under sunlight. Iran Polym J 26, 663–672 (2017). https://doi.org/10.1007/s13726-017-0551-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-017-0551-z

Keywords

Navigation