Skip to main content
Log in

Fracture toughness of epoxy-based stepped functionally graded materials reinforced with carbon nanotubes

  • Original Paper
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

The aim of this work is to investigate the fracture characteristics of the epoxy-based stepped functionally graded materials (FGM) reinforced with carbon nanotubes (CNTs). The effects regarding fracture toughness in mode I were also studied. The specimens were fabricated with three different mass percentages of 0.1, 0.2 and 0.3%. An ultrasonic device was used to disperse the carbon nanotubes to have a uniform mixture without agglomeration of the CNT particles. Using the ASTM standard D-5045, the fracture toughness was obtained in the experiments. Some compact tension specimens were tested in a tensile machine in mode I. Two different notches were investigated to calculate the fracture toughness. For each notch, there were different fracture toughness and fracture forces values. The experiments showed that there is an improvement in the fracture resistance of FGMs and non-graded composite materials by increase in the CNTs content. The materials with the same content of carbon nanotubes do not have the same properties. It is seen that high fracture toughness can be obtained from different CNT content materials in each notch. In fact, the size of the notch affects the results. Comparing the fracture toughness values and fracture forces results showed that there is no specified rule to predict the increase in the fracture characteristics by increasing carbon nanotubes content. Fracture characteristics depend on the important parameters such as the size of the notch, CNTs content and dispersion of the carbon nanotubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wagner HD, Lourie O, Feldman Y, Tenne R (1998) Stress-induced fragmentation of multiwall carbon nanotubes in a polymer matrix. Appl Phys Lett 72:188–190

    Article  CAS  Google Scholar 

  2. Ajayan PM, Schadler LS, Giannaris C, Rubio A (2000) Single-walled carbon nanotube-polymer composites: strength and weakness. Adv Mater 12:750–753

    Article  CAS  Google Scholar 

  3. Dalton AB, Collins S, Munoz E, Razal JM, Ebron VH, Ferraris JP, Coleman JN, Kim BG, Baughman RH (2003) Super-tough carbon-nanotube fibres. Nature 423:703

    Article  CAS  Google Scholar 

  4. Terrones M (2003) Science and technology of the twenty-first century: synthesis, properties, and applications of carbon nanotubes. Annu Rev Mater Res 33:419–501

    Article  CAS  Google Scholar 

  5. Li X, Shao L, Song N, Shi L, Ding P (2016) Enhanced thermal-conductive and anti-dripping properties of polyamide composites by 3D graphene structures at low filler content. Compos Part A-Appl S 88:305–314

    Article  CAS  Google Scholar 

  6. Wang F, Drzal LT, Qin Y, Huang Z (2016) Enhancement of fracture toughness, mechanical and thermal properties of rubber/epoxy composites by incorporation of graphene nanoplatelets. Compos Part A-Appl S 87:10–22

    Article  CAS  Google Scholar 

  7. Silva VA, Folgueras LC, Candido GM, Paula AL, Rezende MC, Costa ML (2013) Nanostructured composites based on carbon nanotubes and epoxy resin for use as radar absorbing materials. Mat Res 16:1299–1308

    Article  CAS  Google Scholar 

  8. Davis DC, Whelan BD (2011) An experimental study of interlaminar shear fracture toughness of a nanotube reinforced composite. Compos Part B-Eng 42:105–116

    Article  Google Scholar 

  9. Lubineau G, Rahaman A (2012) A review of strategies for improving the degradation properties of laminated continuous-fiber/epoxy composites with carbon-based nanoreinforcements. Carbon 50:2377–2395

    Article  CAS  Google Scholar 

  10. Gabr MH, Elrahman MA, Okubo K, Fujii T (2010) Effect of microfibrillated cellulose on mechanical properties of plain-woven CFRP reinforced epoxy. Compos Struct 92:1999–2006

    Article  Google Scholar 

  11. Li M, Gu Y, Liu Y, Li Y, Zhang Z (2013) Interfacial improvement of carbon fiber/epoxy composites using a simple process for depositing commercially functionalized carbon nanotubes on the fibers. Carbon 52:109–121

    Article  CAS  Google Scholar 

  12. Sharma K, Shukla M (2014) Three-phase carbon fiber amine functionalized carbon nanotubes epoxy composite: processing, characterization, and multiscale modeling. J Nanomater. doi:10.1155/2014/837492

    Google Scholar 

  13. Tseng CH, Wang CC, Chen CY (2007) Functionalizing carbon nanotubes by plasma modification for the preparation of covalent-integrated epoxy composites. Chem Mater 19:308–315

    Article  CAS  Google Scholar 

  14. Park JM, Kim DS, Lee JR, Kim TW (2003) Nondestructive damage sensitivity and reinforcing effect of carbon nanotube/epoxy composites using electro-micromechanical technique. Mater Sci Eng C 23:971–975

    Article  Google Scholar 

  15. Inam F, Wong DW, Kuwata M, Peijs T (2010) Multiscale hybrid micro-nanocomposites based on carbon nanotubes and carbon fibers. J Nanomater. doi:10.1155/2010/453420

    Google Scholar 

  16. Ayatollahi MR, Shadlou S, Shokrieh MM (2011) Mixed mode brittle fracture in epoxy/multi- walled carbon nanotube nanocomposites. Eng Fract Mech 78:2620–2632

    Article  Google Scholar 

  17. Patra A, Mitra N (2014) Interface fracture of sandwich composites: influence of MWCNT sonicated epoxy resin. Compos Sci Technol 101:94–101

    Article  CAS  Google Scholar 

  18. Kinloch AJ (2003) Toughening epoxy adhesives to meet today’s challenge. MRS Bull 28:445–448

    Article  CAS  Google Scholar 

  19. Sprenger S (2013) Epoxy resin composites with surface-modified silicon dioxide. Appl Polym Sci 130:1421–1428

    Article  CAS  Google Scholar 

  20. Vietri U, Guadagno L, Raimondo M, Vertuccio L, Lafdi K (2014) Nanofilled epoxy adhesive for structural aeronautic materials. Compos Part B-Eng 61:73–83

    Article  CAS  Google Scholar 

  21. Kurahatti RV, Surendranathan AO, Kori SA, Singh N, Kumar AV, Srivastava S (2010) Defence applications of polymer nanocomposites. Def Sci J 60:551–563

    Article  CAS  Google Scholar 

  22. Jakubinek MB, Ashrafi B, Zhang Y, Martinez-Runi Y, Kingston CT, Johnston A, Simard B (2015) Single-walled carbon nanotube-epoxy composites for structural and conductive aerospace adhesives. Compos Part B Eng 69:87–93

    Article  CAS  Google Scholar 

  23. Tsai JL, Huang BH, Cheng YL (2011) Enhancing Fracture Toughness of glass/epoxy composites for wind blades using silica nanoparticles and rubber particles. Procedia Eng 14:1982–1987

    Article  CAS  Google Scholar 

  24. Sandler J, Shaffer MSP, Prasse T, Bauhofer W, Schulte K, Windle AH (1999) Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties. Polymer 40:5967–5971

    Article  CAS  Google Scholar 

  25. Sun L, Warren GL, O’Reilly JY, Everett WN, Lee SM, Davis D, Lagoudas D, Sue HJ (2008) Mechanical properties of surface-functionalized SWCNT/epoxy composites. Carbon 46:320–328

    Article  CAS  Google Scholar 

  26. Zhu J, Kim JD, Peng HQ, Margrave JL, Khabashesku VN, Barrera EV (2003) Improving the dispersion and integration of single-walled carbon nanotubes in epoxy composites through functionalization. Nano Lett 3:1107–1113

    Article  CAS  Google Scholar 

  27. Gong XY, Liu J, Baskaran S, Voise RD, Young JS (2000) Surfactant-assisted processing of carbon nanotube/polymer composites. Chem Mater 12:1049–1052

    Article  CAS  Google Scholar 

  28. Andrews R, Weisenberger MC (2004) Carbon nanotube polymer composites. Curr Opin Solid St M 8:31–37

    Article  CAS  Google Scholar 

  29. Coleman JN, Khan U, Gun’ko YK (2006) Mechanical reinforcement of polymers using carbon nanotubes. Adv Mater 18:689–706

    Article  CAS  Google Scholar 

  30. Moniruzzaman M, Winey KI (2006) Polymer nanocomposites containing carbon nanotubes. Macromolecules 39:5194–5205

    Article  CAS  Google Scholar 

  31. Homenick CM, Lawson G, Adronov A (2007) Polymer grafting of carbon nanotubes using living free-radical polymerization. Polym Rev 47:265–290

    Article  CAS  Google Scholar 

  32. Zhu J, Peng H, Rodriguez-Macias F, Margrave J, Khabashesku V, Imam A, Lozano K, Barrera EV (2004) Reinforcing epoxy polymer composites through covalent integration of functionalized nanotubes. Adv Funct Mater 14:643–648

    Article  CAS  Google Scholar 

  33. Sun YP, Fu K, Lin Y, Huang W (2002) Functionalized carbon nanotubes: properties and applications. Acc Chem Res 35:1096–1104

    Article  CAS  Google Scholar 

  34. Kim JA, Seong DG, Kang TJ, Youn JR (2006) Effects of surface modification on rheological and mechanical properties of CNT/epoxy composites. Carbon 44:1898–1905

    Article  CAS  Google Scholar 

  35. Tang LC, Zhang H, Han JH, Wu XP, Zhang Z (2011) Fracture mechanisms of epoxy filled with ozone functionalized multi-wall carbon nanotubes. Compos Sci Technol 72:7–13

    Article  CAS  Google Scholar 

  36. Esposito LH, Ramos JA, Kortaberria G (2014) Dispersion of carbon nanotubes in nanostructured epoxy systems for coating application. Prog Org Coat 77:1452–1458

    Article  CAS  Google Scholar 

  37. Garg AC (1986) Interlaminar and interlaminar fracture in graphite/epoxy laminates. Eng Fract Mech 23:719–733

    Article  Google Scholar 

  38. Jenkins MG (2001) Mechanical Engineering 354, Mechanics of Materials Laboratory. http://swhite.me.washington.edu/~jenkinsm/me354/. Accessed 01 Jan 2001

  39. Sumpter JDG (1982) The effect of notch depth and orientation on the fracture toughness of multi-pass weldments. Int J Press Ves Pip 10:169–180

    Article  CAS  Google Scholar 

  40. Rothon R (2003) Particulate-filled polymer composites, 2nd edn. iSmithers Rapra Publishing, UK

    Google Scholar 

  41. Orowan E (1949) Fracture and strength of solids. Rep Prog Phys 12:185–232

    Article  Google Scholar 

Download references

Acknowledgements

The samples were prepared at the Institute of Polymer Materials and Plastics Engineering, (Clausthal University of Technology, Germany) and the mechanical tests were done in Applied Mechanic Institute, (Clausthal University of Technology, Germany). We would like to express our special thanks to Prof. G. Ziegmann and Mr. D. Abliz in Institute of Polymer Materials and Plastics Engineering (Clausthal University of Technology, Germany), Dr. C. Sguazzo, Mr. Ch. Leistner, Mr. J. Koch in Applied Mechanic Institute (Clausthal University of Technology, Germany), Miss A. Shahriari in Department of Mechanical Engineering, Material Group (University of Tabriz, Iran), Mr. A. Sepehrafghan (Sharif Branch, ACECR, Iran) and all others who have helped to coordinate.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soran Hassanifard.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurd, S.M., Hassanifard, S. & Hartmann, S. Fracture toughness of epoxy-based stepped functionally graded materials reinforced with carbon nanotubes. Iran Polym J 26, 253–260 (2017). https://doi.org/10.1007/s13726-017-0512-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-017-0512-6

Keywords

Navigation