Skip to main content
Log in

Preparation and evaluation of chiral selective cation-exchange PMMA–PNIPAm thermal-sensitive membranes

  • Original Paper
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Selective cation-exchange membranes are placing a key role in separation processes. The application of selective cation-exchange membranes is wide since there are many kinds of mixtures needed to be separated for reuse. In this study, a facile and efficient one-pot approach was used to obtain monodispersed methyl methacrylate–N-isopropyl acrylamide (MMA–NIPAm) polymer by atom transfer radical precipitation polymerization (ATRPP) and then MMA–NIPAm chiral selective separation membranes were prepared for separating racemic equol. Firstly, using dodecylbenzenesulfonyl chloride (DBSC) as the initiator, bipyridine (bipy)/CuCl as the catalyst system, acetonitrile as the solvent, and S-equol as template molecule by which a MMA–NIPAm copolymer was synthesized and it was characterized by TEM, FTIR, TGA, UV–vis absorption spectrum, and dynamic layer scattering analysis. Lastly, MMA–NIPAm chiral separation membranes were prepared by casting 3 wt% of MMA–NIPAm copolymer dimethyl formamide (DMF) solution on a rimmed glass plate and evaporated the solvent completely at 100 °C under vacuum. Then, the PMMA–PNIPAm chiral selective cation-exchange membranes were prepared by immersing in methanol/acetic acid (95:5, v/v) to remove the template molecules. Most worthy of mention was that the prepared chiral selective separation membranes could separate S-equol and R-equol from the mixture of racemic equol. In application of a thermo-responsive monomer, the separation ability of the prepared PMMA–PNIPAm chiral separation membranes could be tunable according to environment temperature changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Turner R, Baron T, Wolffram S, Minihane AM, Cassidy A, Rimbach G, Weinberg PD (2004) Effect of circulating forms of soy isoflavones on the oxidation of low density lipoprotein. Free Radic Res 382:209–216

    Article  Google Scholar 

  2. Hedlund TE, Johannes WU, Miller GJ (2003) Soy isoflavonoid equol modulates the growth of benign and malignant prostatic epithelial cells in vitro. Prostate 54:68–78

    Article  Google Scholar 

  3. Muthyala RS, Ju YH, Sheng S, Williams LD, Doerge DR, Katzenellenbogen BS, Helferich WG, Katzenellenbogen JA (2004) Equol, a natural estrogenic metabolite from soy isoflavones: convenient preparation and resolution of R- and S-equols and their differing binding and biological activity through estrogen receptors alpha and beta. Bioorg Med Chem 12:1559–1567

    Article  CAS  Google Scholar 

  4. Kenny AK, Mangano KM, Abourizk RH, Bruno RS, Anamani DE, Kleppinger AS, Walsh J, Prestwood KM, Kerstetter JE (2009) Soy proteins and isoflavones affect bone mineral density in older women: a randomized controlled trial. Am J Clin Nutr 90:234–242

    Article  CAS  Google Scholar 

  5. Alvira E, García JI, Mayoral JA (1998) Molecular modeling study for chiral separation of equol enantiomers by β-cyclodextrin. Chem Phys 240:101–108

    Article  Google Scholar 

  6. Cheong WJ, Yang SH, Ali F (2013) Molecular imprinted polymers for separation science: a review of reviews. J Sep Sci 36:609–628

    Article  CAS  Google Scholar 

  7. Firdaous F, Dhulster P, Amiot J, Gaudreau A, Lecouturier D, Kapel R, Lutin F, Vezina LP, Bazinet L (2009) Concentration and selective separation of bioactive peptides from an alfalfa white protein hydrolysate by electrodialysis with ultrafiltration membranes. J Membr Sci 329:60–67

    Article  CAS  Google Scholar 

  8. Kan XW, Zhao Q, Shao DL, Geng ZR, Wang ZL, Zhu JJ (2010) Preparation and recognition properties of bovine hemoglobin magnetic molecularly imprinted polymers. J Phys Chem B 114:3999–4004

    Article  CAS  Google Scholar 

  9. Piletsky SA, Matuschewski H, Schedler U, Wilpert A, Piletska EV, Thiele TA (2000) Surface functionalization of porous polypropylene membranes with molecularly imprinted polymers by photograft copolymerization in water. Macromolecules 33:3092–3098

    Article  CAS  Google Scholar 

  10. Schild HG (1992) Poly(N-isopropylacrylamide): experiment, theory and application. Prog Polym Sci 17:163–249

    Article  CAS  Google Scholar 

  11. Cao ZF, Jin Y, Zhang B, Miao Q (2010) A novel temperature- and pH-responsive polymer–biomolecule conjugate composed of casein and poly(N-isopropylacrylamide). Iran Polym J 19:689–698

    CAS  Google Scholar 

  12. Deng KL, Li Q, Bai LB, Gou YB, Dong LR, Huang CY, Wang SL, Gao T (2011) A pH/thermo-responsive injectable hydrogel system based on poly(N-acryloylglycine) as a drug carrier. Iran Polym J 20:185–194

    CAS  Google Scholar 

  13. Liu ZJ, Liang YL, Geng FF, Ge C, Ullah K, Lv F, Dai RJ, Zhang YK, Deng YL (2012) Separation of peptides with an aqueous mobile phase by temperature-responsive chromatographic column. J Sep Sci 35:2069–2074

    Article  CAS  Google Scholar 

  14. Kiani GR, Arsalani N (2006) Synthesis and properties of some transition metal complexes with water soluble hydroxy functionalized polyacrylonitrile. Iran Polym J 15:727–735

    CAS  Google Scholar 

  15. Xu LC, Pan JM, Xia QF, Shi FF, Dai JD, Wei X, Yan YS (2012) Composites of silica and molecularly imprinted polymers for degradation of sulfadiazine. J Phys Chem C 116:25309–25318

    Article  CAS  Google Scholar 

  16. Shanmugharaj AM, Ryu SH (2013) Synthesis of poly(styrene-co-acrylonitrile) copolymer brushes on silica nanoparticles through surface-initiated polymerization. Iran Polym J 22:227–236

    Article  CAS  Google Scholar 

  17. Shim SE, Yang S, Choe S (2004) Mechanism of the formation of stable microspheres by precipitation copolymerization of styrene and divinylbenzene. J Polym Sci, Part A Polym Chem 42:3967–3974

    Article  CAS  Google Scholar 

  18. Li K, Stöver HDH (1993) Synthesis of monodisperse poly(divinylbenzene) microspheres. J Polym Sci, Part A Polym Chem 31:3257–3263

    Article  CAS  Google Scholar 

  19. Bai F, Yang X, Li R, Huang B, Huang W (2006) Monodisperse hydrophilic polymer microspheres having carboxylic acid groups prepared by distillation precipitation polymerization. Polymer 47:5775–5784

    Article  CAS  Google Scholar 

  20. Limé F, Irgum K (2007) Monodisperse polymeric particles by photoinitiated precipitation polymerization. Macromolecules 40:1962–1968

    Article  Google Scholar 

  21. Limé F, Irgum K (2009) Preparation of divinylbenzene and divinylbenzene-co-glycidyl methacrylate particles by photoinitiated precipitation polymerization in different solvent mixtures. Macromolecules 42:4436–4442

    Article  Google Scholar 

  22. Liu LC, Wang GX, Lu M, Wu H (2013) Activators regenerated by electron transfer in ATRP of methyl methacrylate with alcohol as reducing agent in the presence of a base. Iran Polym J 22:890–896

    Google Scholar 

  23. Vaughan AD, Sizemore SP, Byrne ME (2007) Enhancing molecularly imprinted polymer binding properties via controlled/living radical polymerization and reaction analysis. Polymer 48:74–81

    Article  CAS  Google Scholar 

  24. Inui K, Noguchi T, Miyata T, Uragami T (1999) Pervaporation characteristics of methyl methacrylate–methacrylic acid copolymer membranes ionically crosslinked with metal ions for a benzene/cyclohexane mixture. J Appl Polym Sci 71:233–241

    Article  CAS  Google Scholar 

  25. Neel J, Huang RYM (1991) Elsevier. Amsterdam, Chapter 1:2–17

    Google Scholar 

  26. Kashiwagi T, Inaba A, Brown JE (1986) Effect of weak linkages on the thermal and oxidative degradation of poly(methyl methacrylates). Macromoleculres 19:2160–2168

    Article  CAS  Google Scholar 

  27. Popovic IG, Katsikas L, Weller H, Schrötter S, Velickovic JS (1993) Polymerization studies: the application of the differential thermogravimetric analysis. J Appl Polym Sci 50:1475–1482

    Article  CAS  Google Scholar 

  28. Chang C, Wei H, Feng J, Wang ZC, Wu XJ, Wu DQ, Cheng SX, Zhang XZ, Zhuo RX (2009) Temperature and pH double responsive hybrid cross-linked micelles based on p(NIPAAm-co-MPMA)-b-P(DEA): RAFT synthesis and “Schizophrenic” micellization. Macromolecules 42:4838–4844

    Article  CAS  Google Scholar 

  29. Zhang XZ, Zhuo RX (2001) Dynamic properties of temperature-sensitive poly(N-isopropylacrylamide) gel cross-linked through siloxane linkage. Langmuir 17:12–16

    Article  Google Scholar 

  30. Xu LC, Pan JM, Dai JD, Li XX, Hang H, Cao ZJ, Yan YS (2012) Preparation of thermal-responsive magnetic molecularly imprinted polymers for selective removal of antibiotics from aqueous solution. J Hazard Mater 233–234:48–56

    Article  Google Scholar 

  31. Gajovic-Eichelmann N, Athikomrattanakul U, Dechtrirat D, Scheller FW (2013) Molecular imprinting technique for biosensing and diagnostics. Iran Polym J 14:143–170

    Google Scholar 

  32. Cowieson D, Piletska E, Moczko E, Piletsky S (2013) Grafting of molecularly imprinted polymer to porous polyethylene filtration membranes by plasma polymerization. Anal Bioanal Chem 405:6489–6496

    Article  CAS  Google Scholar 

  33. Zhang T, Kientzy C, Franco P, Ohnishi A, Kagamihara Y, Kurosawa H (2005) Solvent versatility of immobilized 3,5-dimethylphenylcarbamate of amylose in enantiomeric separations by HPLC. J Chromatogr A 1075:65–75

    Article  CAS  Google Scholar 

  34. Cheng ZY, Zhang LW, Li YZ (2004) Synthesis of an enzyme-like imprinted polymer with the substrate as the template, and its catalytic properties under aqueous conditions. Chem Eur J 10:3555–3561

    Article  CAS  Google Scholar 

  35. Zhu XY, Zheng ZJ, Xie J, Wang P (2012) Selective separation of magnolol using molecularly imprinted membranes. J Sep Sci 35:315–319

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Foundation of State Key Laboratory of Natural and Biomimetic Drugs (K20110105).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Chen Dr..

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, Y., Chen, F. & Luo, Y. Preparation and evaluation of chiral selective cation-exchange PMMA–PNIPAm thermal-sensitive membranes. Iran Polym J 23, 679–687 (2014). https://doi.org/10.1007/s13726-014-0262-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-014-0262-7

Keywords

Navigation